A017707 Numerator of sum of -22nd powers of divisors of n.
1, 4194305, 31381059610, 17592190238721, 2384185791015626, 65810867613760525, 3909821048582988050, 73786993887028445185, 984770902214992292491, 1000000238418579520993, 81402749386839761113322, 92010261758627305193135, 3211838877954855105157370, 8199490986588434846527625
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A017708 (denominator).
Programs
-
Magma
[Numerator(DivisorSigma(22,n)/n^22): n in [1..20]]; // G. C. Greubel, Nov 05 2018
-
Mathematica
Table[Numerator[DivisorSigma[22, n]/n^22], {n, 1, 20}] (* G. C. Greubel, Nov 05 2018 *) DivisorSigma[-22,Range[20]]//Numerator (* Harvey P. Dale, Sep 19 2023 *)
-
PARI
vector(20, n, numerator(sigma(n, 22)/n^22)) \\ G. C. Greubel, Nov 05 2018
Formula
From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017708(n) = zeta(22).
Dirichlet g.f. of a(n)/A017708(n): zeta(s)*zeta(s+22).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017708(k) = zeta(23). (End)
Comments