A017709 Numerator of sum of -23rd powers of divisors of n.
1, 8388609, 94143178828, 70368752566273, 11920928955078126, 65810859767097521, 27368747340080916344, 590295880727458217985, 8862938119746644274757, 50000005960464481733367, 895430243255237372246532, 1656184514187480740117011, 41753905413413116367045798
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A017710 (denominator).
Programs
-
Magma
[Numerator(DivisorSigma(23,n)/n^23): n in [1..20]]; // G. C. Greubel, Nov 03 2018
-
Mathematica
Table[Numerator[Total[Divisors[n]^-23]],{n,12}] (* Harvey P. Dale, Oct 19 2012 *) Table[Numerator[DivisorSigma[23, n]/n^23], {n, 1, 20}] (* G. C. Greubel, Nov 03 2018 *)
-
PARI
a(n) = numerator(sigma(n, 23)/n^23); \\ G. C. Greubel, Nov 03 2018
Formula
From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017710(n) = zeta(23).
Dirichlet g.f. of a(n)/A017710(n): zeta(s)*zeta(s+23).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017710(k) = zeta(24). (End)
Comments