A017711 Numerator of sum of -24th powers of divisors of n.
1, 16777217, 282429536482, 281474993487873, 59604644775390626, 2369190810383965297, 191581231380566414402, 4722366764344638701569, 79766443077154939399843, 500000029802322396083921, 9849732675807611094711842, 13249475323675656646347131, 542800770374370512771595362
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A017712 (denominator).
Programs
-
Magma
[Numerator(DivisorSigma(24,n)/n^24): n in [1..20]]; // G. C. Greubel, Nov 03 2018
-
Mathematica
Table[Numerator[DivisorSigma[24, n]/n^24], {n, 1, 20}] (* G. C. Greubel, Nov 03 2018 *)
-
PARI
a(n) = numerator(sigma(n, 24)/n^24); \\ Michel Marcus, Nov 01 2013
Formula
Dirichlet g.f.: zeta(s)*zeta(s+24) (for fraction A017711/A017712). - Franklin T. Adams-Watters, Sep 11 2005
From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017712(n) = zeta(24).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017712(k) = zeta(25). (End)
Comments