A017774 Binomial coefficients C(58,n).
1, 58, 1653, 30856, 424270, 4582116, 40475358, 300674088, 1916797311, 10648873950, 52179482355, 227692286640, 891794789340, 3155581562280, 10142940735900, 29752626158640, 79960182801345, 197548686920970, 449972009097765, 947309492837400
Offset: 0
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..58 (full sequence)
Programs
-
Magma
[Binomial(58,n): n in [0..58]]; // G. C. Greubel, Nov 13 2018
-
Maple
seq(binomial(58,n), n=0..58); # Nathaniel Johnston, Jun 24 2011
-
Mathematica
Binomial[58, Range[0,58]] (* or *) With[{nmax = 58}, CoefficientList[ Series[Hypergeometric1F1[-58, 1, -x], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 13 2018 *)
-
PARI
vector(58, n, n--; binomial(58,n)) \\ G. C. Greubel, Nov 13 2018
-
Sage
[binomial(58, n) for n in range(18)] # Zerinvary Lajos, May 28 2009
Formula
From G. C. Greubel, Nov 13 2018: (Start)
G.f.: (1+x)^58.
E.g.f.: 1F1(-58; 1; -x), where 1F1 is the confluent hypergeometric function. (End)
Comments