A017788 Binomial coefficients C(72,n).
1, 72, 2556, 59640, 1028790, 13991544, 156238908, 1473109704, 11969016345, 85113005120, 536211932256, 3022285436352, 15363284301456, 70907466006720, 298824321028320, 1155454041309504, 4116305022165108, 13559593014190944, 41432089765583440
Offset: 0
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..72 (full sequence)
Programs
-
GAP
List([0..72], n -> Binomial(72,n)); # G. C. Greubel, Nov 15 2018
-
Magma
[Binomial(72,n): n in [0..72]]; // G. C. Greubel, Nov 15 2018
-
Maple
seq(binomial(72,n), n=0..72); # Nathaniel Johnston, Jun 24 2011
-
Mathematica
Binomial[72, Range[0,72]] (* G. C. Greubel, Nov 15 2018 *)
-
PARI
vector(72, n, n--; binomial(72,n)) \\ G. C. Greubel, Nov 15 2018
-
Sage
[binomial(72, n) for n in range(17)] # Zerinvary Lajos, May 28 2009
Formula
From G. C. Greubel, Nov 15 2018: (Start)
G.f.: (1+x)^72.
E.g.f.: 1F1(-72; 1; -x), where 1F1 is the confluent hypergeometric function. (End)
Comments