cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017881 Expansion of 1/(1 - x^9 - x^10 - x^11 - x^12 - x^13 - x^14).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 3, 4, 6, 10, 15, 21, 25, 27, 27, 26, 25, 25, 30, 41, 59, 81, 104, 125, 141, 151, 155, 160, 174, 206, 261, 340, 440, 551, 661, 757, 836, 906, 987
Offset: 0

Views

Author

Keywords

Comments

Number of compositions (ordered partitions) of n into parts 9, 10, 11, 12, 13 and 14. - Ilya Gutkovskiy, May 27 2017

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 80);
    Coefficients(R!( (1-x)/(1-x-x^9+x^(15)) )); // G. C. Greubel, Sep 25 2024
    
  • Mathematica
    CoefficientList[Series[1/(1-Total[x^Range[9,14]]),{x,0,60}],x] (* or *) LinearRecurrence[{0,0,0,0,0,0,0,0,1,1,1,1,1,1},{1,0,0,0,0,0,0,0,0,1,1,1,1,1}, 60] (* Harvey P. Dale, Feb 27 2012 *)
  • SageMath
    def A017881_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x)/(1-x-x^9+x^(15)) ).list()
    A017881_list(80) # G. C. Greubel, Sep 25 2024

Formula

a(0)=1, a(1)=a(2)=a(3)=a(4)=a(5)=a(6)=a(7)=a(8)=0, a(9)=a(10)=a(11)=a(12)= a(13)=1, a(n) = a(n-9) + a(n-10) + a(n-11) + a(n-12) + a(n-13) + a(n-14). - Harvey P. Dale, Feb 27 2012