A017889 Expansion of 1/(1-x^10-x^11-x^12-x^13).
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 3, 2, 1, 0, 0, 0, 1, 3, 6, 10, 12, 12, 10, 6, 3, 1, 1, 4, 10, 20, 31, 40, 44, 40, 31, 20, 11, 9, 16, 35, 65, 101, 135, 155, 155, 135, 102, 71, 56, 71, 125
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1,1,1,1).
Programs
-
Magma
m:=80; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^10-x^11-x^12-x^13))); // Vincenzo Librandi, Jul 01 2013 -
Mathematica
CoefficientList[Series[1 / (1 - Total[x^Range[10, 13]]), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
-
SageMath
def A017889_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1-x)/(1-x-x^10+x^(14)) ).list() A017889_list(80) # G. C. Greubel, Sep 25 2024
Formula
a(n) = a(n-10) +a(n-11) +a(n-12) +a(n-13) for n>12. - Vincenzo Librandi, Jul 01 2013
Comments