A017980 Powers of cube root of 2 rounded to nearest integer.
1, 1, 2, 2, 3, 3, 4, 5, 6, 8, 10, 13, 16, 20, 25, 32, 40, 51, 64, 81, 102, 128, 161, 203, 256, 323, 406, 512, 645, 813, 1024, 1290, 1625, 2048, 2580, 3251, 4096, 5161, 6502, 8192, 10321, 13004, 16384, 20643, 26008, 32768, 41285, 52016, 65536, 82570, 104032
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Crossrefs
Cf. powers of cube root of k rounded up: this sequence (k=2), A017983 (k=3), A017986 (k=4), A017989 (k=5), A017992 (k=6), A017995 (k=7), A018001 (k=9), A018004 (k=10), A018007 (k=11), A018010 (k=12), A018013 (k=13), A018016 (k=14), A018019 (k=15), A018022 (k=16), A018025 (k=17), A018028 (k=18), A018031 (k=19), A018034 (k=20), A018037 (k=21), A018040 (k=22), A018043 (k=23), A018046 (k=24).
Programs
-
Magma
[Round(2^(n/3)): n in [0..50]]; // Vincenzo Librandi, Jan 07 2014
-
Mathematica
Table[Round[2^(n/3)], {n, 0, 50}] (* Vincenzo Librandi, Jan 07 2014 *) Round[Surd[2,3]^Range[0,50]] (* Harvey P. Dale, Oct 07 2014 *)
-
Python
from sympy import integer_nthroot def A017980(n): return -integer_nthroot(m:=1<
Chai Wah Wu, Jun 18 2024
Extensions
More terms from Vincenzo Librandi, Jan 07 2014