A018025 Powers of cube root of 17 rounded to nearest integer.
1, 3, 7, 17, 44, 112, 289, 743, 1911, 4913, 12633, 32482, 83521, 214756, 552198, 1419857, 3650852, 9387369, 24137569, 62064487, 159585272, 410338673, 1055096276, 2712949630, 6975757441, 17936636689, 46120143717, 118587876497, 304922823712, 784042443182
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Crossrefs
Cf. A010589, A018024, A018026, and powers of cube root of k rounded up: A017980 (k=2), A017983 (k=3), A017986 (k=4), A017989 (k=5), A017992 (k=6), A017995 (k=7), A018001 (k=9), A018004 (k=10), A018007 (k=11), A018010 (k=12), A018013 (k=13), A018016 (k=14), A018019 (k=15), A018022 (k=16), this sequence (k=17), A018028 (k=18), A018031 (k=19), A018034 (k=20), A018037 (k=21), A018040 (k=22), A018043 (k=23), A018046 (k=24).
Programs
-
Magma
[Round(17^(n/3)): n in [0..40]]; // Vincenzo Librandi, Jan 08 2014
-
Mathematica
Table[Round[17^(n/3)], {n, 0, 40}] (* Vincenzo Librandi, Jan 08 2014 *)
-
PARI
a(n) = round((17^(1/3))^n); \\ Michel Marcus, Nov 23 2013
-
Python
from sympy import integer_nthroot def A018025(n): return -integer_nthroot(m:=17**n,3)[0]+integer_nthroot(m<<3,3)[0] # Chai Wah Wu, Jun 18 2024
Extensions
More terms from Michel Marcus, Nov 23 2013