A018026 Powers of cube root of 17 rounded up.
1, 3, 7, 17, 44, 113, 289, 744, 1911, 4913, 12633, 32483, 83521, 214757, 552199, 1419857, 3650853, 9387369, 24137569, 62064487, 159585273, 410338673, 1055096276, 2712949631, 6975757441, 17936636689, 46120143717, 118587876497, 304922823712
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Crossrefs
Cf. A010589, A018024, A018025, and powers of cube root of k ceiling up: A017981 (k=2), A017984 (k=3), A017987 (k=4), A017990 (k=5), A017993 (k=6), A017996 (k=7), A018002 (k=9), A018005 (k=10), A018008 (k=11), A018011 (k=12), A018014 (k=13), A018017 (k=14), A018020 (k=15), A018023 (k=16), this sequence (k=17), A018029 (k=18), A018032 (k=19), A018035 (k=20), A018038 (k=21), A018041 (k=22), A018044 (k=23), A018047 (k=24).
Programs
-
Magma
[Ceiling(17^(n/3)): n in [0..40]]; // Vincenzo Librandi, Jan 10 2014
-
Maple
Digits:= 1000: a:= n-> ceil(17^(n/3)): seq(a(n), n=0..30); # Alois P. Heinz, Nov 23 2013
-
Mathematica
Table[Ceiling[17^(n/3)], {n, 0, 40}] (* Vincenzo Librandi, Jan 10 2014 *)
-
PARI
a(n) = if (n % 3, ceil((17^(1/3))^n), 17^(n/3)); \\ Michel Marcus, Nov 23 2013