cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A373914 a(n) is the largest digit sum of all n-digit fourth powers.

Original entry on oeis.org

1, 9, 13, 19, 25, 37, 43, 52, 55, 70, 76, 79, 85, 99, 103, 108, 118, 127, 135, 142, 144, 153, 171, 166, 178, 181, 189, 198, 205, 211, 220, 232, 234, 243, 252, 261, 265, 274, 279, 283, 297, 298, 313, 316, 325, 334, 337, 346, 358
Offset: 1

Views

Author

Zhining Yang, Jun 22 2024

Keywords

Examples

			a(3) = 13 because 13 is the largest digital sum encountered among all 3-digit fourth powers (attained at both fourth powers: 256, 625).
		

Crossrefs

Programs

  • C
    /* See links. */
  • Mathematica
    Table[Max@Map[Total@IntegerDigits[#^4] &, Range[Ceiling[10^((n - 1)/4)], Floor[(10^n-1)^(1/4)]]], {n, 32}]
  • PARI
    a(n) = my(m=ceil(10^((n-1)/4)), M=sqrtint(sqrtint(10^n))); vecmax(apply(sumdigits, vector(M-m+1, i, (i+m-1)^4))); \\ Michel Marcus, Jun 23 2024
    
  • Python
    from sympy import integer_nthroot
    def A373914(n): return max(sum(int(d) for d in str(m**4)) for m in range((lambda x:x[0]+(x[1]^1))(integer_nthroot(10**(n-1),4)),1+integer_nthroot(10**n-1,4)[0])) # Chai Wah Wu, Jun 26 2024
    

A210518 Number of primes up to 10^(n/4).

Original entry on oeis.org

0, 0, 2, 3, 4, 7, 11, 16, 25, 40, 65, 102, 168, 275, 446, 739, 1229, 2039, 3401, 5703, 9592, 16144, 27293, 46243, 78498, 133551, 227647, 388683, 664579, 1138288, 1951957, 3351550, 5761455, 9915892, 17082666, 29458442, 50847534, 87842213, 151876932, 262795354
Offset: 0

Views

Author

Vladimir Pletser, Jan 26 2013

Keywords

Examples

			a(1) = 0 because 10^(1/4) = 1.77828... and there are no primes less than that.
a(2) = 2 because sqrt(10) = 3.16228... and there are 2 primes below that.
a(3) = 3 because 10^(3/4) = 5.62341... and there are 3 primes below that.
		

Crossrefs

Programs

  • Mathematica
    Table[PrimePi[10^(n/4)], {n, 0, 39}] (* Alonso del Arte, Jan 26 2013 *)

Formula

a(n) = primepi(10^(n/4)) = A000720(A018072(n)).

A210522 Decimal expansion of 10^(3/4).

Original entry on oeis.org

5, 6, 2, 3, 4, 1, 3, 2, 5, 1, 9, 0, 3, 4, 9, 0, 8, 0, 3, 9, 4, 9, 5, 1, 0, 3, 9, 7, 7, 6, 4, 8, 1, 2, 3, 1, 4, 6, 8, 2, 5, 1, 0, 4, 3, 0, 9, 8, 6, 9, 1, 6, 6, 4, 0, 8, 1, 6, 8, 9, 4, 2, 3, 7, 3, 5, 8, 8, 3, 5, 6, 8, 6, 4, 3, 0, 6, 2, 8, 4, 8, 9, 0, 5, 8, 5, 7, 9, 8, 4, 5, 2, 6, 2, 2, 0, 3, 0
Offset: 1

Views

Author

Alonso del Arte, Jan 27 2013

Keywords

Comments

This number is the geometric mean of sqrt(10) and 10.
Floor(10^((4*n - 1)/4)) = A018072(4*n - 1) can be obtained by multiplying this number by 10^(n - 1) and truncating the decimal places.
Harriot gives this constant to 18 decimal places. - Charles R Greathouse IV, Oct 22 2014

Examples

			5.6234132519034908039495103977648...
		

References

  • P. H. Underwood, "Logarithms" Texas Mathematics Teachers' Bulletin, Vol 6 No. 1 (1920), p. 23.

Crossrefs

Programs

Showing 1-3 of 3 results.