cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018243 Inverse Euler transform of A000931.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 7, 8, 11, 13, 17, 21, 28, 34, 45, 56, 73, 92, 120, 151, 197, 250, 324, 414, 537, 687, 892, 1145, 1484, 1911, 2479, 3196, 4148, 5359, 6954, 9000, 11687, 15140, 19672, 25516, 33166, 43065, 56010, 72784, 94716, 123185, 160380, 208740, 271913, 354123, 461529, 601436, 784209, 1022505, 1333856
Offset: 1

Views

Author

Keywords

Examples

			x^3 + x^5 + x^7 + x^8 + x^9 + x^10 + 2*x^11 + 2*x^12 + 3*x^13 + 3*x^14 + ...
		

Crossrefs

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(A000931):
    seq(a(n), n = 1..65); # Peter Luschny, Nov 21 2022
  • Mathematica
    a[n_] := (1/n)*Sum[ MoebiusMu[n/d]*Floor[ Re[ N[ RootSum[ -1-#+#^3&, #^d& ]]]] , {d, Divisors[n]}]; a[2]=0; Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Oct 05 2012, after Michael Somos *)
  • Sage
    z = PowerSeriesRing(ZZ, 'z').gen().O(30)
    r = (1 - (z**2 + z**3))/(1 - z**2)
    F = -z*r.derivative()/r
    [sum(moebius(n//d)*F[d] for d in divisors(n))//n for n in range(1, 24)] # F. Chapoton, Apr 25 2020

Formula

a(n) = A113788(n) unless n=2. - Michael Somos, Apr 06 2012
Reciprocal of g.f. of A000931 = (1 - x^2 - x^3) / (1 - x^2) = 1 - x^3 - x^5 - x^7 - x^9 - ... = Product_{k>0} (1 - x^k)^a(n). - Michael Somos, Jul 17 2012
a(n) ~ A060006^n / n. - Vaclav Kotesovec, Oct 09 2019

Extensions

More terms from Joerg Arndt, Jul 18 2012