cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018247 The 10-adic integer x = ...8212890625 satisfying x^2 = x.

Original entry on oeis.org

5, 2, 6, 0, 9, 8, 2, 1, 2, 8, 1, 9, 9, 5, 2, 6, 5, 2, 2, 9, 3, 7, 7, 9, 9, 1, 6, 6, 0, 1, 4, 0, 0, 9, 0, 1, 6, 9, 8, 0, 3, 2, 3, 2, 4, 3, 2, 4, 7, 5, 5, 0, 0, 0, 1, 1, 8, 3, 6, 8, 0, 8, 5, 9, 0, 5, 6, 6, 1, 2, 6, 0, 0, 9, 8, 9, 0, 5, 8, 3, 9, 2, 0, 8, 9, 6, 1, 8, 0, 1, 9, 1, 3, 7, 0, 0, 3, 5, 9, 3, 0, 9, 3, 6, 2, 4, 6, 7
Offset: 0

Views

Author

Yoshihide Tamori (yo(AT)salk.edu)

Keywords

Comments

The 10-adic numbers a and b defined in this sequence and A018248 satisfy a^2=a, b^2=b, a+b=1, ab=0. - Michael Somos

Examples

			x = ...0863811000557423423230896109004106619977392256259918212890625.
		

References

  • W. W. R. Ball, Mathematical Recreations & Essays, N.Y. Macmillan Co, 1947.
  • V. deGuerre and R. A. Fairbairn, Jnl. Rec. Math., No. 3, (1968), 173-179.
  • M. Kraitchik, Sphinx, 1935, p. 1.

Crossrefs

A007185 gives associated automorphic numbers.
The difference between A018248 & this sequence is A075693 and their product is A075693.
The six examples given by deGuerre and Fairbairn are A055620, A054869, A018247, A018248, A259468, A259469.

Programs

  • Mathematica
    a = {5}; f[n_] := Block[{k = 0, c}, While[c = FromDigits[Prepend[a, k]]; Mod[c^2, 10^n] != c, k++ ]; a = Prepend[a, k]]; Do[ f[n], {n, 2, 105}]; Reverse[a]
    With[{n = 150}, Reverse[IntegerDigits[PowerMod[5, 2^n, 10^n]]]] (* IWABUCHI Yu(u)ki, Feb 16 2024 *)
  • PARI
    a(n)=local(t=5);for(k=1,n+1,t=t^2%10^k);t\10^n \\ Paul D. Hanna, Jul 08 2006
    
  • PARI
    Vecrev(digits(lift(chinese(Mod(1, 2^100), Mod(0, 5^100))))) \\ Seiichi Manyama, Aug 07 2019

Formula

x = 10-adic lim_{n->oo} 5^(2^n) mod 10^(n+1). - Paul D. Hanna, Jul 08 2006

Extensions

More terms from David W. Wilson
Edited by David W. Wilson, Sep 26 2002