cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A119437 Table T(n,k) = number of lines through exactly k points of an n X n grid of points.

Original entry on oeis.org

6, 12, 8, 48, 4, 10, 108, 16, 4, 12, 248, 36, 4, 4, 14, 428, 64, 20, 4, 4, 16, 764, 100, 44, 4, 4, 4, 18, 1196, 204, 36, 24, 4, 4, 4, 20, 1900, 252, 64, 52, 4, 4, 4, 4, 22, 2668, 396, 124, 40, 28, 4, 4, 4, 4, 24, 3824, 572, 200, 20, 60, 4, 4, 4, 4, 4, 26, 5244, 780, 236, 76, 44, 32
Offset: 2

Views

Author

Keywords

Examples

			From _Seiichi Manyama_, Nov 26 2017: (Start)
The table starts:
  n\k|   2    3   4   5   6   7   8
  ---+------------------------------
   2 |   6;
   3 |  12,   8;
   4 |  48,   4, 10;
   5 | 108   16,  4, 12;
   6 | 248,  36,  4,  4, 14;
   7 | 428,  64, 20,  4,  4, 16;
   8 | 764, 100, 44,  4,  4,  4, 18; (End)
		

Crossrefs

Row sums A018808; columns A018809-A018817. See A119439 for another version.

Formula

T(n,k) = 1/2 (f(n, k+1) - 2 f(n, k) + f(n, k-1)) where f(n, k) = Sum_{-n < kx < n, -n < ky < n, gcd(x, y)=1} (n - |kx|)*(n - |ky|). [Seppo Mustonen, Apr 18 2009]

Extensions

An incorrect formula removed by Seppo Mustonen, Apr 25 2009

A187397 Expansion of -2*x^4 *(3*x^13 +2*x^12 +x^11 -6*x^10 -10*x^9 -6*x^8 +x^7 +7*x^6 +5*x^5 -x^4 -8*x^3 -11*x^2 -8*x -5) / ((x -1)^4 *(x +1)^2 *(x^2 +1)^2 *(x^2 +x +1)^2).

Original entry on oeis.org

0, 0, 0, 0, 10, 16, 22, 36, 54, 66, 92, 122, 156, 196, 240, 288, 366, 426, 490, 590, 698, 780, 904, 1036, 1176, 1326, 1484, 1650, 1874, 2060, 2254, 2512, 2782, 3006, 3300, 3606, 3924, 4256, 4600, 4956, 5398, 5782, 6178, 6666, 7170, 7608, 8144
Offset: 0

Views

Author

Sean A. Irvine, Mar 23 2011

Keywords

Comments

In contrast, the number of distinct lines passing through 4 or more points in an n X n grid is given by 0, 0, 0, 10, 16, 22, 44, 74, 92, 154, 232, 326, 436, 562, 704, 998, 1268,.. = A018808(n) -A018809(n) -A018810(n) = A225606(n) -A018810(n). - David W. Wilson, Aug 05 2013

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[ 2x^4 (5 + 8x + 11x^2 + 8x^3 + x^4 - 5x^5 - 7x^6 - x^7 + 6x^8 + 10x^9 + 6x^10 - x^11 - 2x^12 - 3x^13)/((-1 + x)^4 (1 + x)^2 (1 + x^2)^2 (1 + x + x^2)^2), {x, 0, 43}], x] (* or *) LinearRecurrence[{0, 0, 2, 2, 0, -1, -4, -1, 0, 2, 2, 0, 0, -1}, {10, 16, 22, 36, 54, 66, 92, 122, 156, 196, 240, 288, 366, 426}, 40] (* Robert G. Wilson v, Feb 17 2014 *)

Extensions

Definition replaced with Colin Barker's g.f. by R. J. Mathar, Aug 06 2013
Offset changed from 1 to 0 and a(0)=0 added by Vincenzo Librandi, Feb 19 2014

A225606 Number of distinct lines passing through 3 or more points in an n X n grid.

Original entry on oeis.org

0, 0, 0, 8, 14, 32, 58, 108, 174, 296, 406, 628, 898, 1216, 1582, 2188, 2754, 3528, 4398, 5524, 6778, 8336, 9778, 11812, 14038, 16456, 19066, 22540, 25954, 29968, 34270, 39116, 44282, 50312, 56026, 63196, 70798, 78984
Offset: 0

Views

Author

R. J. Mathar, Aug 06 2013

Keywords

Programs

  • Mathematica
    f[n_, k_] := Sum[x = kx/k; y = ky/k; If[IntegerQ[x] && IntegerQ[y] && CoprimeQ[x, y], (n - Abs[kx])(n - Abs[ky]), 0], {kx, -n + 1, n - 1}, {ky, -n + 1, n - 1}];
    a[n_] := (f[n, 2] - f[n, 3])/2;
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 30 2018, after Seppo Mustonen in A018808 *)

Formula

a(n) = A018808(n) - A018809(n) = A018810(n) + A018811(n) + A018812(n) + A018813(n)+....

A119439 Triangle T(n,k) = number of sets of m points determined by the intersection of a line with an n X n grid of points.

Original entry on oeis.org

1, 1, 1, 1, 4, 6, 1, 9, 12, 8, 1, 16, 48, 4, 10, 1, 25, 108, 16, 4, 12, 1, 36, 248, 36, 4, 4, 14, 1, 49, 428, 64, 20, 4, 4, 16, 1, 64, 764, 100, 44, 4, 4, 4, 18, 1, 81, 1196, 204, 36, 24, 4, 4, 4, 20, 1, 100, 1900, 252, 64, 52, 4, 4, 4, 4, 22, 1, 121, 2668, 396, 124, 40, 28, 4, 4, 4, 4
Offset: 0

Views

Author

Keywords

Comments

Each singleton point is determined by all but finitely many of the family of lines passing through that point and the empty set is determined by any randomly positioned line.

Examples

			The table starts:
1,
1,1,
1,4,6,
1,9,12,8,
1,16,48,4,10,
		

Crossrefs

Row sums A119438; columns A000290, A018809-A018817. See A119437 for another version.

Formula

T(n,0) = 1, T(n,1) = n^2, T(n,k) = A119437(n,k) for k>1.
Showing 1-4 of 4 results.