A018921 Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(4,8).
4, 8, 15, 28, 52, 96, 177, 326, 600, 1104, 2031, 3736, 6872, 12640, 23249, 42762, 78652, 144664, 266079, 489396, 900140, 1655616, 3045153, 5600910, 10301680, 18947744, 34850335, 64099760, 117897840, 216847936, 398845537, 733591314, 1349284788, 2481721640
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,-1).
- Index entries for Pisot sequences
Crossrefs
Cf. A008937.
Programs
-
Magma
Tiv:=[4,8]; [n le 2 select Tiv[n] else Ceiling(Self(n-1)^2/Self(n-2))-1: n in [1..40]]; // Bruno Berselli, Feb 17 2016
-
Mathematica
RecurrenceTable[{a[1] == 4, a[2] == 8, a[n] == Ceiling[a[n-1]^2/a[n-2]] - 1}, a, {n, 40}] (* Bruno Berselli, Feb 17 2016 *) LinearRecurrence[{2,0,0,-1},{4,8,15,28},40] (* Harvey P. Dale, Mar 05 2019 *)
-
PARI
Vec((4-x^2-2*x^3)/((1-x)*(1-x-x^2-x^3)) + O(x^40)) \\ Colin Barker, Feb 13 2016
-
PARI
T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a T(4, 8, 30) \\ Colin Barker, Feb 14 2016
Formula
a(n) = 2*a(n-1) - a(n-4).
G.f.: (4-x^2-2*x^3) / ((1-x)*(1-x-x^2-x^3)). - Colin Barker, Feb 08 2012
a(n) = 2*a(n-1) - A008937(n). - Vincenzo Librandi, Feb 12 2016
Extensions
Comments moved to formula, and typo in data fixed by Colin Barker, Feb 13 2016
Comments