cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018921 Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(4,8).

Original entry on oeis.org

4, 8, 15, 28, 52, 96, 177, 326, 600, 1104, 2031, 3736, 6872, 12640, 23249, 42762, 78652, 144664, 266079, 489396, 900140, 1655616, 3045153, 5600910, 10301680, 18947744, 34850335, 64099760, 117897840, 216847936, 398845537, 733591314, 1349284788, 2481721640
Offset: 0

Views

Author

Keywords

Comments

Not to be confused with the Pisot T(4,8) sequence, which is A020707. - R. J. Mathar, Feb 13 2016

Crossrefs

Cf. A008937.

Programs

  • Magma
    Tiv:=[4,8]; [n le 2 select Tiv[n] else Ceiling(Self(n-1)^2/Self(n-2))-1: n in [1..40]]; // Bruno Berselli, Feb 17 2016
  • Mathematica
    RecurrenceTable[{a[1] == 4, a[2] == 8, a[n] == Ceiling[a[n-1]^2/a[n-2]] - 1}, a, {n, 40}] (* Bruno Berselli, Feb 17 2016 *)
    LinearRecurrence[{2,0,0,-1},{4,8,15,28},40] (* Harvey P. Dale, Mar 05 2019 *)
  • PARI
    Vec((4-x^2-2*x^3)/((1-x)*(1-x-x^2-x^3)) + O(x^40)) \\ Colin Barker, Feb 13 2016
    
  • PARI
    T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a
    T(4, 8, 30) \\ Colin Barker, Feb 14 2016
    

Formula

a(n) = 2*a(n-1) - a(n-4).
G.f.: (4-x^2-2*x^3) / ((1-x)*(1-x-x^2-x^3)). - Colin Barker, Feb 08 2012
a(n) = A008937(n+3) = A027084(n+3)+1. [first index correct by R. J. Mathar, Jun 24 2020]
a(n) = 2*a(n-1) - A008937(n). - Vincenzo Librandi, Feb 12 2016

Extensions

Comments moved to formula, and typo in data fixed by Colin Barker, Feb 13 2016