cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018922 Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(8,16).

Original entry on oeis.org

8, 16, 31, 60, 116, 224, 432, 833, 1606, 3096, 5968, 11504, 22175, 42744, 82392, 158816, 306128, 590081, 1137418, 2192444, 4226072, 8146016, 15701951, 30266484, 58340524, 112454976, 216763936, 417825921, 805385358, 1552430192, 2992405408, 5768046880
Offset: 0

Views

Author

Keywords

Comments

Not to be confused with the Pisot T(8,16), which is essentially A000079. - R. J. Mathar, Feb 13 2016

Crossrefs

Cf. A107066.

Programs

  • Magma
    Tiv:=[8,16]; [n le 2 select Tiv[n] else Ceiling(Self(n-1)^2/Self(n-2))-1: n in [1..40]]; // Bruno Berselli, Feb 17 2016
  • Mathematica
    Drop[CoefficientList[Series[1/(1 - 2*z + z^5), {z, 0, 100}], z], 3] (* Vladimir Joseph Stephan Orlovsky, Jul 08 2011 *)
    RecurrenceTable[{a[1] == 8, a[2] == 16, a[n] == Ceiling[a[n-1]^2/a[n-2]] - 1}, a, {n, 40}] (* Bruno Berselli, Feb 17 2016 *)
    LinearRecurrence[{2,0,0,0,-1},{8,16,31,60,116},40] (* Harvey P. Dale, Sep 21 2024 *)
  • PARI
    T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a
    T(8, 16, 40) \\ Colin Barker, Feb 14 2016
    

Formula

a(n) = 2*a(n-1) - a(n-5).
a(n) = A107066(n+3). - Vladimir Joseph Stephan Orlovsky, Jul 08 2011
O.g.f: -(-8+x^2+2*x^3+4*x^4)/((x-1)*(x^4+x^3+x^2+x-1)) = (1/3)/(x-1)+(1/3)*(-13*x^3-20*x^2-24*x-25)/(x^4+x^3+x^2+x-1) . - R. J. Mathar, Dec 02 2007