cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A018930 a(1)=3; for n>1, a(n) is smallest positive integer such that a(1)^2+...+a(n)^2 = m^2 for some m.

Original entry on oeis.org

3, 4, 12, 84, 132, 12324, 1836, 105552, 255084, 197580, 10358340, 13775220, 1936434780, 51299286012, 123205977516, 862441842612, 1310543298204, 667510076211780, 207181940072172, 110912831751840, 1698410314006284
Offset: 1

Views

Author

Charles Reed (charles.reed(AT)bbs.ewgateway.org)

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Module[{a={3}}, Do[AppendTo[a,First[y/. {ToRules[Reduce[{y^2+a.a == x^2,x>0,y>0}, {y,x},Integers]]}]], {n-1}]; a]; f[21]//Timing (* Jean-François Alcover, Jan 26 2007 *)
  • PARI
    print1("3, "); s=9; for(n=1,30, d=divisors(s); t=d[#d\2]; q=(s\t-t)/2; print1(q,", "); s+=q^2); \\ Max Alekseyev, Nov 23 2012

Extensions

More terms from David W. Wilson.

A018928 Define {b(n)} by b(1)=3, b(n) (n >= 2) is the smallest number such that b(1)^2 + ... + b(n)^2 = m^2 for some m and all b(i) are distinct. Sequence gives values of m.

Original entry on oeis.org

3, 5, 13, 85, 157, 12325, 12461, 106285, 276341, 339709, 10363909, 17238541, 1936511509, 51335823965, 133473142309, 872709007405, 1574530008629, 667511933218429, 698925273030725, 707670964169285, 1839944506840141
Offset: 1

Views

Author

Charles Reed (charles.reed(AT)bbs.ewgateway.org)

Keywords

Comments

Also: Begin with the least length of a Pythagorean Triangle (PT), a(1)=3. Then a(n) is the least hypotenuse of a PT which has a(n-1) as one of its legs. - Robert G. Wilson v, Mar 17 2014

Crossrefs

Programs

  • Mathematica
    NextA018928[n_] := Block[{a = n^2, b, l, i, c, d, f}, b = Divisors[a]; l = Length[b]; i = l; While[i--; c = b[[i]]; d = a/c - (c - 1); (d <= 1) || EvenQ[d]]; f = (a/c + (c - 1) + 1)/2]; Table[If[i == 1, a = 3, a = NextA018928[a]]; a, {i, 1, 21}](* Lei Zhou, Feb 20 2014 *)
    f[s_List] := Block[{x = s[[-1]]}, Append[s, Transpose[ Solve[ x^2 + y^2 == z^2 && y > 0 && z > 0, {y, z}, Integers]][[-1, 1, 2]]]]; lst = Nest[f, lst, 15] (* Robert G. Wilson v, Mar 17 2014 *)

Extensions

More terms from David W. Wilson

A072470 a(0) = 0, a(1) = 9; for n > 1 a(n) = smallest positive square (possibly required to be greater than a(n-1)?) such that a(0) + a(1) + ... + a(n) is a square.

Original entry on oeis.org

0, 9, 16, 144, 7056, 17424, 151880976, 3370896, 11141224704, 65067847056, 39037856400, 107295207555600, 189756686048400, 3749779657193648400, 2631616745340978864144, 15179712895673097530256
Offset: 0

Views

Author

Amarnath Murthy, Jun 19 2002

Keywords

Comments

Sequence is infinite as every partial sum (n>0) is odd, say 2k + 1 and then k^2 is a candidate for the next term.

Examples

			a(3) = 16 as a(1) + a(2) + a(3) = 25 is also a square.
a(4) = 144 as 0 + 9 + 16 + 144 = 169 is also a square.
		

Programs

  • Mathematica
    a[0] = 0; a[1] = 9; a[n_] := a[n] = (k = Sqrt[a[n - 1]] + 1; s = Sum[a[i], {i, 0, n - 1}]; While[ !IntegerQ[ Sqrt[s + k^2]], k++ ]; k^2);

Formula

a(n) = A018930(n)^2. - Benoit Cloitre, Jun 21 2002
a(n) = A018929(n+1) - A018929(n) for n > 1. - César Aguilera, Nov 10 2018

Extensions

Edited by N. J. A. Sloane and Robert G. Wilson v, Jun 21 2002
More terms from Benoit Cloitre, Jun 21 2002
Showing 1-3 of 3 results.