A018930
a(1)=3; for n>1, a(n) is smallest positive integer such that a(1)^2+...+a(n)^2 = m^2 for some m.
Original entry on oeis.org
3, 4, 12, 84, 132, 12324, 1836, 105552, 255084, 197580, 10358340, 13775220, 1936434780, 51299286012, 123205977516, 862441842612, 1310543298204, 667510076211780, 207181940072172, 110912831751840, 1698410314006284
Offset: 1
Charles Reed (charles.reed(AT)bbs.ewgateway.org)
-
f[n_]:=Module[{a={3}}, Do[AppendTo[a,First[y/. {ToRules[Reduce[{y^2+a.a == x^2,x>0,y>0}, {y,x},Integers]]}]], {n-1}]; a]; f[21]//Timing (* Jean-François Alcover, Jan 26 2007 *)
-
print1("3, "); s=9; for(n=1,30, d=divisors(s); t=d[#d\2]; q=(s\t-t)/2; print1(q,", "); s+=q^2); \\ Max Alekseyev, Nov 23 2012
A018928
Define {b(n)} by b(1)=3, b(n) (n >= 2) is the smallest number such that b(1)^2 + ... + b(n)^2 = m^2 for some m and all b(i) are distinct. Sequence gives values of m.
Original entry on oeis.org
3, 5, 13, 85, 157, 12325, 12461, 106285, 276341, 339709, 10363909, 17238541, 1936511509, 51335823965, 133473142309, 872709007405, 1574530008629, 667511933218429, 698925273030725, 707670964169285, 1839944506840141
Offset: 1
Charles Reed (charles.reed(AT)bbs.ewgateway.org)
-
NextA018928[n_] := Block[{a = n^2, b, l, i, c, d, f}, b = Divisors[a]; l = Length[b]; i = l; While[i--; c = b[[i]]; d = a/c - (c - 1); (d <= 1) || EvenQ[d]]; f = (a/c + (c - 1) + 1)/2]; Table[If[i == 1, a = 3, a = NextA018928[a]]; a, {i, 1, 21}](* Lei Zhou, Feb 20 2014 *)
f[s_List] := Block[{x = s[[-1]]}, Append[s, Transpose[ Solve[ x^2 + y^2 == z^2 && y > 0 && z > 0, {y, z}, Integers]][[-1, 1, 2]]]]; lst = Nest[f, lst, 15] (* Robert G. Wilson v, Mar 17 2014 *)
A072470
a(0) = 0, a(1) = 9; for n > 1 a(n) = smallest positive square (possibly required to be greater than a(n-1)?) such that a(0) + a(1) + ... + a(n) is a square.
Original entry on oeis.org
0, 9, 16, 144, 7056, 17424, 151880976, 3370896, 11141224704, 65067847056, 39037856400, 107295207555600, 189756686048400, 3749779657193648400, 2631616745340978864144, 15179712895673097530256
Offset: 0
a(3) = 16 as a(1) + a(2) + a(3) = 25 is also a square.
a(4) = 144 as 0 + 9 + 16 + 144 = 169 is also a square.
-
a[0] = 0; a[1] = 9; a[n_] := a[n] = (k = Sqrt[a[n - 1]] + 1; s = Sum[a[i], {i, 0, n - 1}]; While[ !IntegerQ[ Sqrt[s + k^2]], k++ ]; k^2);
Showing 1-3 of 3 results.
Comments