A018928
Define {b(n)} by b(1)=3, b(n) (n >= 2) is the smallest number such that b(1)^2 + ... + b(n)^2 = m^2 for some m and all b(i) are distinct. Sequence gives values of m.
Original entry on oeis.org
3, 5, 13, 85, 157, 12325, 12461, 106285, 276341, 339709, 10363909, 17238541, 1936511509, 51335823965, 133473142309, 872709007405, 1574530008629, 667511933218429, 698925273030725, 707670964169285, 1839944506840141
Offset: 1
Charles Reed (charles.reed(AT)bbs.ewgateway.org)
-
NextA018928[n_] := Block[{a = n^2, b, l, i, c, d, f}, b = Divisors[a]; l = Length[b]; i = l; While[i--; c = b[[i]]; d = a/c - (c - 1); (d <= 1) || EvenQ[d]]; f = (a/c + (c - 1) + 1)/2]; Table[If[i == 1, a = 3, a = NextA018928[a]]; a, {i, 1, 21}](* Lei Zhou, Feb 20 2014 *)
f[s_List] := Block[{x = s[[-1]]}, Append[s, Transpose[ Solve[ x^2 + y^2 == z^2 && y > 0 && z > 0, {y, z}, Integers]][[-1, 1, 2]]]]; lst = Nest[f, lst, 15] (* Robert G. Wilson v, Mar 17 2014 *)
A018929
Define {b(n)} by b(1) = 3, b(n) (n >= 2) is smallest number such that b(1)^2 + ... + b(n)^2 = m^2 for some m and all b(i) are distinct. Sequence gives values of m^2.
Original entry on oeis.org
9, 25, 169, 7225, 24649, 151905625, 155276521, 11296501225, 76364348281, 115402204681, 107410609760281, 297167295808681, 3750076824489457081, 2635366822165468321225, 17815079717838565851481, 761621011605820344834025
Offset: 1
Charles Reed (charles.reed(AT)bbs.ewgateway.org)
A127689
a(1)=3; for n>1, a(n) is least number such that a(n) > a(n-1) and a(1)^2+...+a(n)^2 is a square.
Original entry on oeis.org
3, 4, 12, 84, 132, 12324, 15960, 26280, 27300, 66660, 115188, 9777193284, 23465263884, 48701491080, 40900397690640, 680008604512020, 127049882801497788, 247290967245178188, 335580091290976716, 1045885075937364972, 1607091702050097396, 3419793695168900508, 5138020847719969956, 10059508412964112740
Offset: 1
a(2)=4 because 3^2+4^2=5^2, a(3)=12 because 3^2+4^2+12^2=13^2 etc.
-
a = {3}; For[k = 1 + a[[Length[a]]], Length[a] < 11, While[ ! IntegerQ[Sqrt[(k)^2 + Sum[(a[[t]])^2, {t, 1, Length[a]}]]], k++ ]; AppendTo[a, k]]; a
-
q=3; s=9; for(n=1,30, b=0; fordiv(s,d, if(d*d>=s,break); t=(s\d-d)/2; if(t>q,b=t); ); q=b; print1(q,", "); s+=q^2); \\ Max Alekseyev, Nov 23 2012
A127690
a(1)=3; for n>1, a(n) is such that a(1)^2+...+a(n)^2 = (1+a(n))^2.
Original entry on oeis.org
3, 4, 12, 84, 3612, 6526884, 21300113901612, 226847426110843688722000884, 25729877366557343481074291996721923093306518970391612, 331013294649039928396936390888878360035026305412754995683702777533071737279144813617823976263475290370884
Offset: 1
a(2)=4 because (3^2+4^2=5^2) and (4+1=5), a(3)=12 because (3^2+4^2+12^2=13^2) and (12+1=13) a(5)= 3612 because (3^2+4^2+12^2+84^2+3612^2=3613^2) and (3612+1=3613) etc.
Apart from the initial term, the sequence is the same as
A053631.
-
a = {3}; For[k = 1 + a[[Length[a]]], Length[a] < 5, While[ ! ((IntegerQ[Sqrt[(k)^2 + Sum[(a[[t]])^2, {t, 1, Length[a]}]]]) && (Sqrt[(k)^2 + Sum[(a[[t]])^2, {t, 1, Length[a]}]] == k + 1)), k++ ]; AppendTo[a, k]]; a
a = {3}; For[k = 1 + a[[Length[a]]], Length[a] < 12, s2 = Plus @@ (a^2); t = Reduce[{y^2 + s2 == (y + 1)^2}, y, Integers]; t = t /. {Equal -> Rule}; k = y /. t; AppendTo[a, k]]; a (* Daniel Huber *)
A072470
a(0) = 0, a(1) = 9; for n > 1 a(n) = smallest positive square (possibly required to be greater than a(n-1)?) such that a(0) + a(1) + ... + a(n) is a square.
Original entry on oeis.org
0, 9, 16, 144, 7056, 17424, 151880976, 3370896, 11141224704, 65067847056, 39037856400, 107295207555600, 189756686048400, 3749779657193648400, 2631616745340978864144, 15179712895673097530256
Offset: 0
a(3) = 16 as a(1) + a(2) + a(3) = 25 is also a square.
a(4) = 144 as 0 + 9 + 16 + 144 = 169 is also a square.
-
a[0] = 0; a[1] = 9; a[n_] := a[n] = (k = Sqrt[a[n - 1]] + 1; s = Sum[a[i], {i, 0, n - 1}]; While[ !IntegerQ[ Sqrt[s + k^2]], k++ ]; k^2);
A307077
Let a(1)=3; for n > 1, let a(n) be the least positive integer k such that k > a(n-1), a(1)^2 + ... + a(n-1)^2 + k^2 is a square and the Pythagorean triple sqrt(a(1)^2 + ... + a(n-1)^2), a(n), sqrt(a(1)^2 + ... + a(n)^2) is primitive.
Original entry on oeis.org
3, 4, 12, 84, 132, 12324, 89892, 2447844, 28350372, 295742791596, 171480834409712412, 633511848768467916, 1616599508725767821225590810932, 4158520496012961741299012805876, 115366949386695884000892071516523067413910188
Offset: 1
-
lista(NN) = s=9;k=3;print1(k);for(n=1,NN-1,v=divisors(s);j=#v;while(v[j]*(v[j]+2*k)>s,j--);while(gcd((s-v[j]^2)/(2*v[j]), s)!=1, j--);print1(", ", k=(s-v[j]^2)/(2*v[j]));s+=k^2); \\ Jinyuan Wang, May 31 2019
Showing 1-6 of 6 results.
Comments