cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A018928 Define {b(n)} by b(1)=3, b(n) (n >= 2) is the smallest number such that b(1)^2 + ... + b(n)^2 = m^2 for some m and all b(i) are distinct. Sequence gives values of m.

Original entry on oeis.org

3, 5, 13, 85, 157, 12325, 12461, 106285, 276341, 339709, 10363909, 17238541, 1936511509, 51335823965, 133473142309, 872709007405, 1574530008629, 667511933218429, 698925273030725, 707670964169285, 1839944506840141
Offset: 1

Views

Author

Charles Reed (charles.reed(AT)bbs.ewgateway.org)

Keywords

Comments

Also: Begin with the least length of a Pythagorean Triangle (PT), a(1)=3. Then a(n) is the least hypotenuse of a PT which has a(n-1) as one of its legs. - Robert G. Wilson v, Mar 17 2014

Crossrefs

Programs

  • Mathematica
    NextA018928[n_] := Block[{a = n^2, b, l, i, c, d, f}, b = Divisors[a]; l = Length[b]; i = l; While[i--; c = b[[i]]; d = a/c - (c - 1); (d <= 1) || EvenQ[d]]; f = (a/c + (c - 1) + 1)/2]; Table[If[i == 1, a = 3, a = NextA018928[a]]; a, {i, 1, 21}](* Lei Zhou, Feb 20 2014 *)
    f[s_List] := Block[{x = s[[-1]]}, Append[s, Transpose[ Solve[ x^2 + y^2 == z^2 && y > 0 && z > 0, {y, z}, Integers]][[-1, 1, 2]]]]; lst = Nest[f, lst, 15] (* Robert G. Wilson v, Mar 17 2014 *)

Extensions

More terms from David W. Wilson

A018929 Define {b(n)} by b(1) = 3, b(n) (n >= 2) is smallest number such that b(1)^2 + ... + b(n)^2 = m^2 for some m and all b(i) are distinct. Sequence gives values of m^2.

Original entry on oeis.org

9, 25, 169, 7225, 24649, 151905625, 155276521, 11296501225, 76364348281, 115402204681, 107410609760281, 297167295808681, 3750076824489457081, 2635366822165468321225, 17815079717838565851481, 761621011605820344834025
Offset: 1

Views

Author

Charles Reed (charles.reed(AT)bbs.ewgateway.org)

Keywords

Crossrefs

Formula

a(n) = A018928(n+1)^2 - A018930(n+1)^2. - César Aguilera, Nov 02 2018

Extensions

More terms from David W. Wilson

A127689 a(1)=3; for n>1, a(n) is least number such that a(n) > a(n-1) and a(1)^2+...+a(n)^2 is a square.

Original entry on oeis.org

3, 4, 12, 84, 132, 12324, 15960, 26280, 27300, 66660, 115188, 9777193284, 23465263884, 48701491080, 40900397690640, 680008604512020, 127049882801497788, 247290967245178188, 335580091290976716, 1045885075937364972, 1607091702050097396, 3419793695168900508, 5138020847719969956, 10059508412964112740
Offset: 1

Views

Author

Artur Jasinski, Jan 23 2007

Keywords

Comments

Without the a(n) > a(n-1) constraint, the sequence would be A018930.

Examples

			a(2)=4 because 3^2+4^2=5^2, a(3)=12 because 3^2+4^2+12^2=13^2 etc.
		

Crossrefs

Programs

  • Mathematica
    a = {3}; For[k = 1 + a[[Length[a]]], Length[a] < 11, While[ ! IntegerQ[Sqrt[(k)^2 + Sum[(a[[t]])^2, {t, 1, Length[a]}]]], k++ ]; AppendTo[a, k]]; a
  • PARI
    q=3; s=9; for(n=1,30, b=0; fordiv(s,d, if(d*d>=s,break); t=(s\d-d)/2; if(t>q,b=t); ); q=b; print1(q,", "); s+=q^2); \\ Max Alekseyev, Nov 23 2012

Extensions

More terms from Max Alekseyev, Nov 23 2012

A127690 a(1)=3; for n>1, a(n) is such that a(1)^2+...+a(n)^2 = (1+a(n))^2.

Original entry on oeis.org

3, 4, 12, 84, 3612, 6526884, 21300113901612, 226847426110843688722000884, 25729877366557343481074291996721923093306518970391612, 331013294649039928396936390888878360035026305412754995683702777533071737279144813617823976263475290370884
Offset: 1

Views

Author

Artur Jasinski, Jan 23 2007, Jan 29 2007

Keywords

Examples

			a(2)=4 because (3^2+4^2=5^2) and (4+1=5), a(3)=12 because (3^2+4^2+12^2=13^2) and (12+1=13) a(5)= 3612 because (3^2+4^2+12^2+84^2+3612^2=3613^2) and (3612+1=3613) etc.
		

Crossrefs

Apart from the initial term, the sequence is the same as A053631.

Programs

  • Mathematica
    a = {3}; For[k = 1 + a[[Length[a]]], Length[a] < 5, While[ ! ((IntegerQ[Sqrt[(k)^2 + Sum[(a[[t]])^2, {t, 1, Length[a]}]]]) && (Sqrt[(k)^2 + Sum[(a[[t]])^2, {t, 1, Length[a]}]] == k + 1)), k++ ]; AppendTo[a, k]]; a
    a = {3}; For[k = 1 + a[[Length[a]]], Length[a] < 12, s2 = Plus @@ (a^2); t = Reduce[{y^2 + s2 == (y + 1)^2}, y, Integers]; t = t /. {Equal -> Rule}; k = y /. t; AppendTo[a, k]]; a (* Daniel Huber *)

Formula

For n>2, a(n) = (a(1)^2 + a(2)^2 + ... + a(n-1)^2 - 1)/2 = ((a(n-1) + 1)^2 - 1)/2. - Max Alekseyev, Nov 23 2012
a(n) = A053630(n-1)-1 for n>=2. - R. J. Mathar, Apr 23 2007

A072470 a(0) = 0, a(1) = 9; for n > 1 a(n) = smallest positive square (possibly required to be greater than a(n-1)?) such that a(0) + a(1) + ... + a(n) is a square.

Original entry on oeis.org

0, 9, 16, 144, 7056, 17424, 151880976, 3370896, 11141224704, 65067847056, 39037856400, 107295207555600, 189756686048400, 3749779657193648400, 2631616745340978864144, 15179712895673097530256
Offset: 0

Views

Author

Amarnath Murthy, Jun 19 2002

Keywords

Comments

Sequence is infinite as every partial sum (n>0) is odd, say 2k + 1 and then k^2 is a candidate for the next term.

Examples

			a(3) = 16 as a(1) + a(2) + a(3) = 25 is also a square.
a(4) = 144 as 0 + 9 + 16 + 144 = 169 is also a square.
		

Programs

  • Mathematica
    a[0] = 0; a[1] = 9; a[n_] := a[n] = (k = Sqrt[a[n - 1]] + 1; s = Sum[a[i], {i, 0, n - 1}]; While[ !IntegerQ[ Sqrt[s + k^2]], k++ ]; k^2);

Formula

a(n) = A018930(n)^2. - Benoit Cloitre, Jun 21 2002
a(n) = A018929(n+1) - A018929(n) for n > 1. - César Aguilera, Nov 10 2018

Extensions

Edited by N. J. A. Sloane and Robert G. Wilson v, Jun 21 2002
More terms from Benoit Cloitre, Jun 21 2002

A307077 Let a(1)=3; for n > 1, let a(n) be the least positive integer k such that k > a(n-1), a(1)^2 + ... + a(n-1)^2 + k^2 is a square and the Pythagorean triple sqrt(a(1)^2 + ... + a(n-1)^2), a(n), sqrt(a(1)^2 + ... + a(n)^2) is primitive.

Original entry on oeis.org

3, 4, 12, 84, 132, 12324, 89892, 2447844, 28350372, 295742791596, 171480834409712412, 633511848768467916, 1616599508725767821225590810932, 4158520496012961741299012805876, 115366949386695884000892071516523067413910188
Offset: 1

Views

Author

Rohan Hemasingha, May 30 2019

Keywords

Comments

For n > 1, a(n) is the even value of a primitive Pythagorean triple where the larger odd value of the triple equals the smaller odd value of a primitive Pythagorean triple with even value a(n+1) (see A239381). - Torlach Rush, Jan 27 2023

Crossrefs

Programs

  • PARI
    lista(NN) = s=9;k=3;print1(k);for(n=1,NN-1,v=divisors(s);j=#v;while(v[j]*(v[j]+2*k)>s,j--);while(gcd((s-v[j]^2)/(2*v[j]), s)!=1, j--);print1(", ", k=(s-v[j]^2)/(2*v[j]));s+=k^2); \\ Jinyuan Wang, May 31 2019

Formula

The numbers are generated by using the well-known characterization of primitive Pythagorean triples, namely (a,b,c) is a PPT iff there are positive integers j,k of opposite parity with j > k, and gcd(j,k)=1 such that a = j^2 - k^2, b = 2jk, c = j^2 + k^2.

Extensions

a(14)-a(15) from Jinyuan Wang, Jun 01 2019
Showing 1-6 of 6 results.