cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018934 From the game of Mousetrap.

Original entry on oeis.org

0, 0, 0, 2, 8, 42, 256, 1810, 14568, 131642, 1320128, 14551074, 174879880, 2276108362, 31894886208, 478775722802, 7664993150696, 130369025763930, 2347604596782208, 44619881467365442, 892659329531868168, 18750556523491299434, 412601744979927877760, 9491630163800726992722
Offset: 0

Views

Author

Keywords

Comments

Number of permutations p of [n] such that p(k) = k+2 for exactly one k in the range 0 < k < n-1. - Vladeta Jovovic, Nov 30 2007

Crossrefs

Programs

  • Mathematica
    Join[{0,0},With[{nn=30},CoefficientList[Series[(2x Exp[-x])/(1-x)^3, {x,0,nn}],x] Range[0,nn]!]] (* Harvey P. Dale, Nov 16 2013 *)
  • PARI
    C=binomial;
    a(n)=if(n<=2, 0, n! + sum(k=1,n, (-1)^k * ( C(n-1,k)+C(n-2,k-1) )*(n-k)! ) );
    /* Joerg Arndt, Apr 22 2013 */
    
  • Sage
    def A():
        a, b, n  = 1, 1, 1
        yield 0
        while True:
            yield b - a
            n += 1
            a, b = b, (n-2)*a+(n-1)*b
    A018934 = A()
    print([next(A018934) for  in range(24)]) # _Peter Luschny, Jan 30 2017

Formula

From Vladeta Jovovic, Nov 30 2007: (Start)
a(n) = (n-2)*A055790(n-2).
E.g.f.: 2*x*exp(-x)/(1-x)^3. (End)
a(n) = floor((n!+1)/e) - floor(((n-2)!+1)/e), n > 2. - Gary Detlefs, Mar 27 2011
G.f.: (1-x)*x/Q(0) - x, where Q(k) = 1 + x - x*(k+2)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013
G.f.: G(0)*x - x, where G(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - (1-x*(1+2*k))*(1-x*(3+2*k))/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Feb 05 2014
For n > 1, a(n) = (n-1)*A000166(n-1) + (n-2)*A000166(n-2). - Kevin Long, Feb 21 2021

Extensions

More terms from Vladeta Jovovic, Nov 30 2007, corrected Jan 25 2008