A019464 Multiply by 1, add 1, multiply by 2, add 2, etc., start with 1.
1, 1, 2, 4, 6, 18, 21, 84, 88, 440, 445, 2670, 2676, 18732, 18739, 149912, 149920, 1349280, 1349289, 13492890, 13492900, 148421900, 148421911, 1781062932, 1781062944, 23153818272, 23153818285, 324153455990, 324153456004, 4862301840060, 4862301840075, 77796829441200
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Haskell
a019464 n = a019464_list !! n a019464_list = 1 : concat (unfoldr ma (1, [1, 1])) where ma (x, [_, j]) = Just (ij', (x + 1, ij')) where ij' = [x * j, x * j + x] -- Reinhard Zumkeller, Nov 14 2011
-
Mathematica
a[n_?EvenQ] := n/2 + a[n-1]; a[n_?OddQ] := (n+1)*a[n-1]/2; a[0] = 1; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Nov 15 2011 *)
-
PARI
A019464(n,a=1)={for(i=2,n+1,if(bittest(i,0),a+=i\2,a*=i\2));a} \\ M. F. Hasler, Feb 25 2018
Formula
For n>=1, a(2n)=floor((1+e)*(n-1)!)-1, a(2n+1)=floor((1+e)*(n+1)!)-n-2. - Benoit Cloitre, Apr 29 2003
a(n+1) = (1/2)*a(n)*(n+1 mod 2)*(n+2) + (1/2)*(n mod 2)*(2*a(n)+n+1). - Francois Jooste (pin(AT)myway.com), Jun 25 2003
a(n) = (n mod 2)*(floor((1+e)*(floor(n/2)+1)!)-floor(n/2)-2)+((n+1) mod 2)*(floor((1+e)*floor(n/2)!)-1) for n >= 1 with a(0) = 1. - Wesley Ivan Hurt, Aug 04 2025
Extensions
Edited by M. F. Hasler, Feb 25 2018