A019518 Smarandache-Wellin numbers: a(n) is the concatenation of first n primes (written in base 10).
2, 23, 235, 2357, 235711, 23571113, 2357111317, 235711131719, 23571113171923, 2357111317192329, 235711131719232931, 23571113171923293137, 2357111317192329313741, 235711131719232931374143, 23571113171923293137414347
Offset: 1
Examples
E.g. a(6) = 2_3_5_7_11_13 = 23571113.
References
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 72. [The 2002 printing states incorrectly that a(719) is prime. Cf. A046035.] This book uses the name "Smarandache-Wellin numbers", referring to a 1998 private communication from P. Wellin.
- H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.
- M. Le, On Smarandache Concatenated Sequences I: Prime Power Sequences, Smarandache Notions Journal, Vol. 9, No. 1-2, 1998, 129-130.
- S. Smarandoiu, Convergence of Smarandache continued fractions, Abstract 96T-11-195, Abstracts Amer. Math. Soc., 17 (No. 4, 1996), 680.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..300
- M. Fleuren, Factoring of the Smarandache Concatenated Prime Sequence.
- F. Smarandache, Collected Papers, Vol. II, Tempus Publ. Hse., Bucharest, Romania, 1996.
- Eric Weisstein's World of Mathematics, Consecutive Number Sequences
- Eric Weisstein's World of Mathematics, Copeland-Erdős Constant
- Index entries for sequences related to Most Wanted Primes video
Crossrefs
Programs
-
Haskell
a019518 n = a019518_list !! (n-1) a019518_list = map read $ scanl1 (++) $ map show a000040_list :: [Integer] -- Reinhard Zumkeller, Mar 03 2014
-
Magma
[Seqint(Reverse(&cat[Reverse(Intseq(NthPrime(k))): k in [1..n]])): n in [1..20]]; // Vincenzo Librandi, Aug 23 2015
-
Mathematica
ConsecutivePrimes[n_] := FromDigits[Flatten[IntegerDigits /@ Prime[Range[n]]]] (* Eric W. Weisstein *) Table[FromDigits[Flatten[IntegerDigits[Prime[Range[i]]]]],{i,15}] (* Jayanta Basu, May 30 2013 *)
-
PARI
s="";for(n=1,30,print1(s=Str(s,prime(n))",")) \\ Cino Hilliard; simplified by M. F. Hasler, Oct 06 2013
-
PARI
A019518(n)=eval(concat(concat([""],primes(n)))) \\ Faster than concat(apply(s->Str(s),primes(n))) or forprime(...s=Str(s,p)). - M. F. Hasler, Oct 06 2013
Extensions
Definition edited by N. J. A. Sloane, Jul 02 2017