A019521 Concatenate squares.
1, 14, 149, 14916, 1491625, 149162536, 14916253649, 1491625364964, 149162536496481, 149162536496481100, 149162536496481100121, 149162536496481100121144, 149162536496481100121144169, 149162536496481100121144169196, 149162536496481100121144169196225
Offset: 1
References
- S. Smarandoiu, Convergence of Smarandache continued fractions, Abstract 96T-11-195, Abstracts Amer. Math. Soc., Vol. 17, No. 4 (1996), p. 680.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..225
- Y. Guo and M. Le, Smarandache Concatenated Power Decimals and Their Irrationality, Smarandache Notions Journal, Vol. 9, No. 1-2 (1998), pp. 100-102.
- F. Smarandache, Collected Papers, Vol. II.
- Eric Weisstein's World of Mathematics, Consecutive Number Sequences.
Programs
-
Haskell
a019521 n = a019521_list !! (n-1) a019521_list = f "" $ tail a000290_list where f xs (q:qs) = (read ys :: Integer) : f ys qs where ys = xs ++ show q -- Reinhard Zumkeller, Mar 01 2014
-
Maple
a:= proc(n) a(n):= `if`(n=1, 1, parse(cat(a(n-1), n^2))) end: seq(a(n), n=1..20); # Alois P. Heinz, Jan 13 2021
-
Python
def a(n): return int("".join(str(i*i) for i in range(1, n+1))) print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Jan 14 2021
Comments