A019560 Coordination sequence for C_4 lattice.
1, 32, 192, 608, 1408, 2720, 4672, 7392, 11008, 15648, 21440, 28512, 36992, 47008, 58688, 72160, 87552, 104992, 124608, 146528, 170880, 197792, 227392, 259808, 295168, 333600, 375232, 420192, 468608
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vincenzo Librandi)
- M. Baake and U. Grimm, Coordination sequences for root lattices and related graphs, arXiv:cond-mat/9706122, Zeit. f. Kristallographie, 212 (1997), 253-256.
- R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
- Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
Crossrefs
Programs
-
Magma
[1] cat [(32/3)*n*(1 + 2*n^2): n in [1..40]]; // Vincenzo Librandi, Apr 10 2017
-
Mathematica
Join[{1}, Table[(32/3) n (1 + 2 n^2), {n, 30}]] (* Vincenzo Librandi, Apr 10 2017 *)
Formula
a(n) = (32/3)*n*(1 + 2*n^2) for n>0.
G.f.: (1 + 28*x + 70*x^2 + 28*x^3 + x^4)/(1 - x)^4.
G.f. for sequence with interpolated zeros: cosh(8*arctanh(x)) = 1/2*(((1 + x)/(1 - x))^4 + ((1 - x)/(1 + x))^4) = 1 + 32*x^2 + 192*x^4 + 608*x^6 + .... Cf. A057813. - Peter Bala, Apr 09 2017
a(n) = A008412(2*n). - Seiichi Manyama, Jun 08 2018