A019565 The squarefree numbers ordered lexicographically by their prime factorization (with factors written in decreasing order). a(n) = Product_{k in I} prime(k+1), where I is the set of indices of nonzero binary digits in n = Sum_{k in I} 2^k.
1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 42, 35, 70, 105, 210, 11, 22, 33, 66, 55, 110, 165, 330, 77, 154, 231, 462, 385, 770, 1155, 2310, 13, 26, 39, 78, 65, 130, 195, 390, 91, 182, 273, 546, 455, 910, 1365, 2730, 143, 286, 429, 858, 715, 1430, 2145, 4290
Offset: 0
Examples
5 = 2^2+2^0, e_1 = 2, e_2 = 0, prime(2+1) = prime(3) = 5, prime(0+1) = prime(1) = 2, so a(5) = 5*2 = 10. From _Philippe Deléham_, Jun 03 2015: (Start) This sequence regarded as a triangle withs rows of lengths 1, 1, 2, 4, 8, 16, ...: 1; 2; 3, 6; 5, 10, 15, 30; 7, 14, 21, 42, 35, 70, 105, 210; 11, 22, 33, 66, 55, 110, 165, 330, 77, 154, 231, 462, 385, 770, 1155, 2310; ... (End) From _Peter Munn_, Jun 14 2020: (Start) The initial terms are shown below, equated with the product of their prime factors to exhibit the lexicographic order. We start with 1, since 1 is factored as the empty product and the empty list is first in lexicographic order. n a(n) 0 1 = . 1 2 = 2. 2 3 = 3. 3 6 = 3*2. 4 5 = 5. 5 10 = 5*2. 6 15 = 5*3. 7 30 = 5*3*2. 8 7 = 7. 9 14 = 7*2. 10 21 = 7*3. 11 42 = 7*3*2. 12 35 = 7*5. (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..8191
Crossrefs
Row 1 of A285321.
Equivalent sequences for k-th-power-free numbers: A101278 (k=3), A101942 (k=4), A101943 (k=5), A054842 (k=10).
Cf. A007088, A030308, A000040, A013929, A005117, A103785, A103786, A110765, A064273, A246353, A283475, A283477, A285319, A285331, A285332, A288569, A293442.
Cf. A109162 (iterates).
Cf. A276076, A276086 (analogous sequences for factorial and primorial bases), A334110 (terms squared).
For partial sums see A288570.
A003961, A003987, A004198, A059897, A089913, A331590, A334747 are used to express relationships between sequence terms.
Column 1 of A329332.
Even bisection (which contains the odd terms): A332382.
Least prime index of a(n) is A001511.
Programs
-
Haskell
a019565 n = product $ zipWith (^) a000040_list (a030308_row n) -- Reinhard Zumkeller, Apr 27 2013
-
Maple
a:= proc(n) local i, m, r; m:=n; r:=1; for i while m>0 do if irem(m,2,'m')=1 then r:=r*ithprime(i) fi od; r end: seq(a(n), n=0..60); # Alois P. Heinz, Sep 06 2014
-
Mathematica
Do[m=1;o=1;k1=k;While[ k1>0, k2=Mod[k1, 2];If[k2\[Equal]1, m=m*Prime[o]];k1=(k1-k2)/ 2;o=o+1];Print[m], {k, 0, 55}] (* Lei Zhou, Feb 15 2005 *) Table[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2], {n, 0, 55}] (* Michael De Vlieger, Aug 27 2016 *) b[0] := {1}; b[n_] := Flatten[{ b[n - 1], b[n - 1] * Prime[n] }]; a = b[6] (* Fred Daniel Kline, Jun 26 2017 *)
-
PARI
a(n)=factorback(vecextract(primes(logint(n+!n,2)+1),n)) \\ M. F. Hasler, Mar 26 2011, updated Aug 22 2014, updated Mar 01 2018
-
Python
from operator import mul from functools import reduce from sympy import prime def A019565(n): return reduce(mul,(prime(i+1) for i,v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # Chai Wah Wu, Dec 25 2014
-
Scheme
(define (A019565 n) (let loop ((n n) (i 1) (p 1)) (cond ((zero? n) p) ((odd? n) (loop (/ (- n 1) 2) (+ 1 i) (* p (A000040 i)))) (else (loop (/ n 2) (+ 1 i) p))))) ;; (Requires only the implementation of A000040 for prime numbers.) - Antti Karttunen, Apr 20 2017
Formula
G.f.: Product_{k>=0} (1 + prime(k+1)*x^2^k), where prime(k)=A000040(k). - Ralf Stephan, Jun 20 2003
a(n) = f(n, 1, 1) with f(x, y, z) = if x > 0 then f(floor(x/2), y*prime(z)^(x mod 2), z+1) else y. - Reinhard Zumkeller, Mar 13 2010
a(n) = a(2^x)*a(2^y)*a(2^z)*... = prime(x+1)*prime(y+1)*prime(z+1)*..., where n = 2^x + 2^y + 2^z + ... - Benedict W. J. Irwin, Jul 24 2016
From Antti Karttunen, Apr 18 2017 and Jun 18 2017: (Start)
a(2^n - 1) = A002110(n). - Michael De Vlieger, Jul 05 2017
From Peter Munn, Mar 04 2022: (Start)
a(2n) = A003961(a(n)); a(2n+1) = 2*a(2n).
a(x XOR y) = A059897(a(x), a(y)) = A089913(a(x), a(y)), where XOR denotes bitwise exclusive OR (A003987).
a(n+1) = A334747(a(n)).
a(x+y) = A331590(a(x), a(y)).
(End)
Extensions
Definition corrected by Klaus-R. Löffler, Aug 20 2014
New name from Peter Munn, Jun 14 2020
Comments