cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019584 a(n) = n^2*(n-1)^3/4.

Original entry on oeis.org

0, 0, 1, 18, 108, 400, 1125, 2646, 5488, 10368, 18225, 30250, 47916, 73008, 107653, 154350, 216000, 295936, 397953, 526338, 685900, 882000, 1120581, 1408198, 1752048, 2160000, 2640625, 3203226, 3857868, 4615408, 5487525, 6486750, 7626496, 8921088, 10385793
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A099903.

Programs

Formula

a(n) = Sum_{j=1..n-2} Sum_{i=1..n-2} (i^3 + j^3)/2. - Alexander Adamchuk, Oct 24 2004
G.f.: x^2*(1 + 12*x + 15*x^2 + 2*x^3)/(1 - x)^6. - Colin Barker, May 04 2012
a(n) = Sum_{i=0..n-1} (n-1)*(n-1-i)^3 for n>0. - Bruno Berselli, Oct 31 2017
From Amiram Eldar, Feb 13 2023: (Start)
a(n) = A099903(n-1)/2.
Sum_{n>=2} 1/a(n) = 16 - 2*Pi^2 + 4*zeta(3).
Sum_{n>=2} (-1)^n/a(n) = 24*log(2) - 16 - Pi^2/3 + 3*zeta(3). (End)