A019588 The right budding sequence: # of i such that 0 < i <= n and {tau*n} <= {tau*i} < 1, where {} is fractional part.
1, 2, 1, 3, 5, 2, 5, 1, 5, 9, 3, 8, 13, 5, 11, 2, 9, 16, 5, 13, 1, 10, 19, 5, 15, 25, 9, 20, 3, 15, 27, 8, 21, 34, 13, 27, 5, 20, 35, 11, 27, 2, 19, 36, 9, 27, 45, 16, 35, 5, 25, 45, 13, 34, 1, 23, 45, 10, 33, 56, 19, 43, 5, 30, 55, 15, 41, 67, 25, 52, 9, 37, 65, 20, 49, 3, 33, 63, 15
Offset: 1
References
- J. H. Conway, personal communication.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- N. J. A. Sloane, Classic Sequences
Programs
-
Haskell
a019588 n = length $ filter (nTau <=) $ map (snd . properFraction . (* tau) . fromInteger) [1..n] where (_, nTau) = properFraction (tau * fromInteger n) tau = (1 + sqrt 5) / 2 -- Reinhard Zumkeller, Jan 28 2012
-
Mathematica
r = -GoldenRatio; p[x_] := FractionalPart[x]; u[n_, k_] := If[p[k*r] <= p[n*r], 1, 0] v[n_, k_] := If[p[k*r] > p[n*r], 1, 0] s[n_] := Sum[u[n, k], {k, 1, n}] t[n_] := Sum[v[n, k], {k, 1, n}] Table[s[n], {n, 1, 100}] (* A019588 *) Table[t[n], {n, 1, 100}] (* A194734 *) (* Clark Kimberling, Sep 02 2011 *) Fold[Join[#1, Range[#1[[#2]], Length[#1] + 1 + Floor[GoldenRatio (#2 + 1)] - Floor[GoldenRatio #2], #2 + 1]] &, {1, 2}, Range[30]] (* Birkas Gyorgy, May 24 2012 *)
Formula
a(n) = A194733(n) + 1.
Extensions
Extended by Ray Chandler, Apr 18 2009
Comments