cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A210649 Decimal expansion of cos(Pi/17).

Original entry on oeis.org

9, 8, 2, 9, 7, 3, 0, 9, 9, 6, 8, 3, 9, 0, 1, 7, 7, 8, 2, 8, 1, 9, 4, 8, 8, 4, 4, 8, 5, 5, 1, 9, 8, 7, 1, 6, 0, 9, 8, 7, 2, 2, 8, 7, 5, 0, 6, 5, 6, 3, 2, 8, 7, 5, 9, 9, 7, 3, 8, 0, 4, 5, 9, 2, 0, 3, 9, 0, 7, 8, 5, 2, 5, 5, 2, 2, 4, 4, 2, 1, 7, 4, 2, 9, 6, 8, 4
Offset: 0

Views

Author

Bruno Berselli, Mar 27 2012

Keywords

Comments

This algebraic number is related to the constructibility of the regular heptadecagon (see also A210644), it is a root of the polynomial 256*x^8-128*x^7-448*x^6+192*x^5+240*x^4-80*x^3-40*x^2+8*x+1.
The continued fraction expansion of cos(Pi/17) is 0, 1, 57, 1, 2, 1, 2, 2, 8, 9, 2, 3, 1, 1, 1, 1, 1, 2, 2, 13, 5, 1, 7, 84, 1, 1, 1,...
Expressed in terms of radicals, cos(Pi/17) is (1/8)*sqrt(2*(2*sqrt(sqrt((17/2)*(17-sqrt(17))) - sqrt((1/2)*(17-sqrt(17))) - 4*sqrt(2*(17+sqrt(17))) + 3*sqrt(17) + 17) + sqrt(17) + sqrt(2*(17-sqrt(17))) + 15)). - Jean-François Alcover, Dec 21 2012

Examples

			cos(Pi/17) = 0.9829730996839017782819488448551987160987228750656328...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Cos[Pi/17], 10, 87][[1]]
  • Maxima
    fpprec:90; ev(bfloat(cos(%pi/17)));
  • PARI
    cos(Pi/17)
    

Formula

Equals (i^(2/17) - i^(32/17))/2. - Peter Luschny, Apr 04 2020

A019700 Decimal expansion of 2*Pi/17.

Original entry on oeis.org

3, 6, 9, 5, 9, 9, 1, 3, 5, 7, 1, 6, 4, 4, 6, 2, 6, 3, 3, 4, 8, 5, 4, 6, 2, 8, 0, 3, 8, 5, 8, 2, 3, 8, 6, 8, 7, 2, 9, 0, 7, 8, 7, 5, 2, 8, 6, 7, 6, 5, 9, 5, 0, 8, 3, 4, 9, 9, 9, 3, 4, 8, 1, 4, 4, 7, 9, 7, 8, 4, 0, 0, 7, 3, 9, 5, 5, 3, 9, 9, 9, 8, 3, 8, 5, 9, 2, 3, 3, 2, 3, 9, 3, 1, 9, 0, 2, 4, 3
Offset: 0

Views

Author

Keywords

Examples

			0.3695991357164462633485462803858238687290787528676595....
		

Crossrefs

Programs

A370393 Decimal expansion of the area of a unit heptadecagon (17-gon).

Original entry on oeis.org

2, 2, 7, 3, 5, 4, 9, 1, 8, 9, 8, 4, 1, 6, 5, 5, 1, 4, 8, 2, 4, 2, 3, 7, 2, 3, 8, 7, 3, 9, 3, 7, 6, 3, 5, 7, 6, 1, 0, 6, 4, 1, 9, 9, 1, 4, 6, 9, 3, 3, 0, 9, 8, 8, 6, 0, 3, 5, 6, 5, 9, 4, 4, 0, 3, 9, 7, 2, 3, 2, 5, 1, 4, 8, 7, 9, 6, 7, 7, 7, 5, 7, 4, 7, 6, 4, 6
Offset: 2

Views

Author

Michal Paulovic, Feb 17 2024

Keywords

Comments

This constant multiplied by the square of the side length of a regular heptadecagon equals the area of that heptadecagon.
17^2 divided by this constant equals 68 * tan(Pi/17) = 12.71140300... which is the perimeter and the area of an equable heptadecagon with its side length 4 * tan(Pi/17) = 0.74772958... .
An equable rectangle with its perimeter and area = 17 has side lengths:
a = s^2/8 = (17 - sqrt(17)) / 4 = (17 - A010473) / 4 = 3.21922359...
b = 136/s^2 = (17 + sqrt(17)) / 4 = (17 + A010473) / 4 = 5.28077640...
where s is the parameter from the formula mentioned below.

Examples

			22.7354918984165514...
		

Crossrefs

Cf. A007450, A010473, A019684 (Pi/17), A210644 (cos(2*Pi/17)), A210649, A228787, A241243, A329592, A343061.

Programs

  • Maple
    evalf(17 / (4 * tan(Pi/17)), 100);
  • Mathematica
    RealDigits[17 / (4 * Tan[Pi/17]), 10, 100][[1]]
  • PARI
    17 / (4 * tan(Pi/17))

Formula

Equals 17 / (4 * tan(Pi/17)) = 17 / (4 * A343061).
Equals 1 / (4 * A007450 * A343061).
Equals 17 * cos(Pi/17) / (4 * sin(Pi/17)).
Equals 17 * A210649 / (4 * A241243).
Equals 17 * A210649 / (2 * A228787).
Equals 17 * cot(Pi/17) / 4.
Equals 17 * sqrt(4 / (s^2 - 2 * s - 4 * sqrt(17 + 3 * sqrt(17) - s - sqrt(17) * 16/s)) - 1/16) where s = sqrt(34 - 2 * sqrt(17)) = 4 * A329592.
The minimal polynomial is 4294967296*x^16 - 3103113871360*x^14 + 510054948143104*x^12 - 28954726431195136*x^10 + 653743432704327680*x^8 - 6011468019822067712*x^6 + 20881180982314634240*x^4 - 21552361799603318912*x^2 + 2862423051509815793.

A377968 Decimal expansion of tan(arctan(4)/4).

Original entry on oeis.org

3, 4, 4, 1, 5, 0, 7, 3, 1, 4, 0, 8, 9, 1, 0, 8, 0, 7, 7, 1, 4, 7, 5, 9, 2, 2, 7, 8, 8, 5, 3, 4, 6, 8, 4, 7, 6, 0, 5, 6, 5, 0, 2, 0, 8, 3, 2, 5, 8, 4, 4, 0, 5, 8, 2, 4, 5, 8, 1, 7, 5, 1, 4, 8, 8, 0, 4, 5, 4, 0, 1, 0, 7, 8, 2, 8, 3, 5, 8, 4, 0, 3, 4, 3, 3, 3, 0, 5, 1, 0
Offset: 0

Views

Author

Paolo Xausa, Nov 13 2024

Keywords

Examples

			0.34415073140891080771475922788534684760565020832584...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Tan[ArcTan[4]/4], 10, 100]]

Formula

Equals 2*(cos(6*Pi/17) + cos(10*Pi/17)) = 2*(cos(6*A019684) + cos(10*A019684)).
Equals (sqrt(34 + 2*sqrt(17)) - sqrt(17) - 1)/4 = (sqrt(34 + 2*A010473) - A010473 - 1)/4.
Equals the root closest to 0 of x^4 + x^3 - 6*x^2 - x + 1.
Showing 1-4 of 4 results.