cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A210644 Decimal expansion of cos(2*Pi/17).

Original entry on oeis.org

9, 3, 2, 4, 7, 2, 2, 2, 9, 4, 0, 4, 3, 5, 5, 8, 0, 4, 5, 7, 3, 1, 1, 5, 8, 9, 1, 8, 2, 1, 5, 6, 3, 3, 8, 6, 2, 6, 2, 5, 8, 7, 7, 7, 7, 9, 4, 5, 1, 1, 6, 9, 2, 8, 2, 4, 8, 3, 5, 0, 0, 1, 1, 8, 6, 0, 5, 3, 6, 0, 4, 6, 5, 6, 9, 6, 4, 4, 4, 9, 8, 1, 2, 8, 0, 7, 4
Offset: 0

Views

Author

Bruno Berselli, Mar 26 2012

Keywords

Comments

Constant related to the constructibility of the regular heptadecagon. The "Disquisitiones Arithmeticae" of Gauss contains the following equivalent expression:
-1/16+(1/16)*sqrt(17)+(1/16)*sqrt(34-2*sqrt(17))+(1/8)*sqrt(17+3*sqrt(17)-sqrt(34-2*sqrt(17))-2*sqrt((34+2*sqrt(17)))).
This value is a root of the polynomial 256*x^8+128*x^7-448*x^6-192*x^5+240*x^4+80*x^3-40*x^2-8*x+1.
The continued fraction expansion of cos(2*Pi/17) is 0, 1, 13, 1, 4, 4, 2, 1, 1, 2, 4, 425, 1, 2, 5, 3, 1, 1, 1, 1, 1, 4, 4, 10, 3, 2, 1,...

Examples

			cos(2*Pi/17) = 0.9324722294043558045731158918215633862625877779451169...
		

References

  • C. F. Gauss, Disquisitiones Arithmeticae, 1801 (Lipsia), p. 662 (par. 365).
  • Ian Stewart, Professor Stewart's Cabinet of Mathematical Curiosities, BASIC Books, a member of the Perseus Books Group, NY, 2009, "Why Gauss Became a Mathematician", pp. 146 - 149.
  • Ian Stewart, Why Beauty Is Truth, A History of Symmetry, BASIC Books, a member of the Perseus Books Group, NY 2007, pp. 136.

Crossrefs

Programs

  • Mathematica
    RealDigits[Cos[2Pi/17], 10, 105][[1]]
    RealDigits[(-1 + Sqrt[17] + Sqrt[34 - 2 Sqrt[17]] + Sqrt[68 + 12 Sqrt[17] - 4 Sqrt[170 + 38 Sqrt[17]]])/16, 10, 111][[1]] (* Robert G. Wilson v, Aug 09 2012 *)
  • Maxima
    fpprec:90; ev(bfloat(cos(2*%pi/17)));
  • PARI
    cos(2*Pi/17)
    

Formula

Equals (i^(4/17) - i^(30/17))/2. - Peter Luschny, Apr 04 2020

A019684 Decimal expansion of Pi/17.

Original entry on oeis.org

1, 8, 4, 7, 9, 9, 5, 6, 7, 8, 5, 8, 2, 2, 3, 1, 3, 1, 6, 7, 4, 2, 7, 3, 1, 4, 0, 1, 9, 2, 9, 1, 1, 9, 3, 4, 3, 6, 4, 5, 3, 9, 3, 7, 6, 4, 3, 3, 8, 2, 9, 7, 5, 4, 1, 7, 4, 9, 9, 6, 7, 4, 0, 7, 2, 3, 9, 8, 9, 2, 0, 0, 3, 6, 9, 7, 7, 6, 9, 9, 9, 9, 1, 9, 2, 9, 6, 1, 6, 6, 1, 9, 6, 5, 9, 5, 1, 2, 1
Offset: 0

Views

Author

Keywords

Examples

			0.1847995678582231316742731401929119343645393764338297541....
		

Crossrefs

Programs

A241243 Decimal representation of sin(Pi/17).

Original entry on oeis.org

1, 8, 3, 7, 4, 9, 5, 1, 7, 8, 1, 6, 5, 7, 0, 3, 3, 1, 5, 7, 4, 4, 0, 8, 8, 3, 9, 6, 2, 0, 7, 2, 7, 5, 8, 2, 4, 8, 9, 1, 3, 8, 5, 2, 3, 8, 4, 4, 4, 9, 9, 4, 0, 5, 8, 5, 0, 6, 5, 0, 8, 5, 7, 7, 4, 8, 9, 1, 4, 9, 2, 8, 2, 5, 3, 0, 5, 0, 1, 7, 3, 0, 3, 0, 6, 0, 1, 1, 9, 5, 1, 2, 1, 0, 7, 3, 0, 4, 8, 5, 9, 2, 9, 6, 7, 9, 7, 6, 3, 4, 0, 0, 2, 9, 7, 4, 9, 1, 6, 9
Offset: 0

Views

Author

Zak Seidov, Apr 18 2014

Keywords

Examples

			0.18374951781657033157440883962072758248913852384449940585065085774891492825305...
		

References

  • Saul Stahl, "Geometry From Euclid To Knots" Chapter 4.3, 'Regular Polygons', Courier - Dover Publications, NJ, 2009, pp. 153-154.

Programs

  • Maple
    Digits:=100: evalf(sin(Pi/17)); # Wesley Ivan Hurt, Aug 15 2014
  • Mathematica
    RealDigits[ Sin[ Pi/17], 10, 111][[1]] (* Robert G. Wilson v, Aug 14 2014 *)
    RealDigits[Root[17 - 816 x^2 + 11424 x^4 - 71808 x^6 + 239360 x^8 -
      452608 x^10 + 487424 x^12 - 278528 x^14 + 65536 x^16, 9],10,105][[1]] (* Artur Jasinski, Aug 04 2025 *)

Formula

Equals 1/4 sqrt(8 - sqrt(2*(15 + sqrt(17) - sqrt(2*(17 - sqrt(17))) + sqrt(2*(34 + 6 sqrt(17) + sqrt(2*(17 - sqrt(17))) - sqrt(34*(17 - sqrt(17))) + 8*sqrt(2*(17 + sqrt(17)))))))). - Robert G. Wilson v, Aug 14 2014
The minimal polynomial is 65536x^16 - 278528x^14 + 487424x^12 - 452608x^10 + 2398360x^8 - 71808 x^6 + 11424x^4 - 816x^2 + 17. - Robert G. Wilson v, Aug 14 2014
This^2 + A210649^2 = 1. - R. J. Mathar, Aug 31 2025

Extensions

Offset corrected by Amiram Eldar, Aug 04 2025

A343056 Decimal expansion of the real part of i^(1/16), or cos(Pi/32).

Original entry on oeis.org

9, 9, 5, 1, 8, 4, 7, 2, 6, 6, 7, 2, 1, 9, 6, 8, 8, 6, 2, 4, 4, 8, 3, 6, 9, 5, 3, 1, 0, 9, 4, 7, 9, 9, 2, 1, 5, 7, 5, 4, 7, 4, 8, 6, 8, 7, 2, 9, 8, 5, 7, 0, 6, 1, 8, 3, 3, 6, 1, 2, 9, 6, 5, 7, 8, 4, 8, 9, 0, 1, 6, 6, 8, 9, 4, 5, 8, 6, 5, 3, 7, 9, 7, 2, 5, 2, 9, 0, 8, 4, 2, 6, 9, 6, 4, 8, 3, 9, 0, 2, 8, 7, 7, 2, 4, 4, 9, 3, 1, 1, 8, 2, 9
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Examples

			0.9951847266721968862448369...
		

Crossrefs

cos(Pi/m): A010503 (m=4), A019863 (m=5), A010527 (m=6), A073052 (m=7), A144981 (m=8), A019879 (m=9), A019881 (m=10), A019884 (m=12), A232735 (m=14), A019887 (m=15), A232737 (m=16), A210649 (m=17), A019889 (m=18), A019890 (m=20), A144982 (m=24), A019893 (m=30). this sequence (m=32), A019894 (m=36).

Programs

  • Magma
    R:= RealField(127); Cos(Pi(R)/32); // G. C. Greubel, Sep 30 2022
    
  • Mathematica
    RealDigits[Cos[Pi/32], 10, 100][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    real(I^(1/16))
    
  • PARI
    cos(Pi/32)
    
  • PARI
    sqrt(2+sqrt(2+sqrt(2+sqrt(2))))/2
    
  • SageMath
    numerical_approx(cos(pi/32), digits=122) # G. C. Greubel, Sep 30 2022

Formula

Equals (1/2) * sqrt(2+sqrt(2+sqrt(2+sqrt(2)))).
Satisfies 32768*x^16 -131072*x^14 +212992*x^12 -180224*x^10 +84480*x^8 -21504*x^6 +2688*x^4 -128*x^2 +1 = 0. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/16,1/16;1/2;1/2). - R. J. Mathar, Aug 31 2025

A343061 Decimal expansion of tan(Pi/17).

Original entry on oeis.org

1, 8, 6, 9, 3, 2, 3, 9, 7, 1, 0, 7, 9, 7, 7, 1, 4, 5, 9, 4, 8, 0, 7, 6, 2, 8, 4, 1, 2, 3, 0, 7, 6, 7, 7, 0, 6, 0, 3, 7, 2, 4, 4, 1, 0, 7, 8, 1, 9, 1, 4, 5, 4, 9, 3, 4, 8, 4, 6, 3, 6, 7, 5, 7, 3, 1, 4, 7, 8, 9, 2, 6, 9, 7, 0, 9, 0, 3, 0, 9, 2, 4, 5, 3, 7, 5, 5, 4, 1, 0, 3, 5, 0, 2, 6, 5, 9, 4, 5, 5, 0, 8, 3, 2, 1, 4, 6, 5, 1, 4, 8, 5, 7, 4, 0, 1, 5
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Comments

Root of the equation 17 - 680*x^2 + 6188*x^4 - 19448*x^6 + 24310*x^8 - 12376*x^10 + 2380*x^12 - 136*x^14 + x^16 = 0. - Vaclav Kotesovec, Apr 04 2021

Examples

			0.18693239710797714594807628412307...
		

Crossrefs

Cf. A241243 (sin(Pi/17)), A210649 (cos(Pi/17)).

Programs

  • Mathematica
    RealDigits[Tan[Pi/17], 10, 100][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    tan(Pi/17)

Formula

Equals sqrt((-2*(-8 + sqrt(2*(15 + sqrt(17) - sqrt(34 - 2*sqrt(17)) + sqrt(2*(34 + 6*sqrt(17) - sqrt(578 - 34*sqrt(17)) + sqrt(34 - 2*sqrt(17)) + 8*sqrt(2*(17 + sqrt(17)))))))))/(15 + sqrt(17) + sqrt(34 - 2*sqrt(17)) + sqrt(2*(34 + 6*sqrt(17) + sqrt(578 - 34*sqrt(17)) - sqrt(34 - 2*sqrt(17)) - 8*sqrt(2*(17 + sqrt(17))))))). - Vaclav Kotesovec, Apr 04 2021

A303816 Decimal expansion of 2700/17.

Original entry on oeis.org

1, 5, 8, 8, 2, 3, 5, 2, 9, 4, 1, 1, 7, 6, 4, 7, 0, 5, 8, 8, 2, 3, 5, 2, 9, 4, 1, 1, 7, 6, 4, 7, 0, 5, 8, 8, 2, 3, 5, 2, 9, 4, 1, 1, 7, 6, 4, 7, 0, 5, 8, 8, 2, 3, 5, 2, 9, 4, 1, 1, 7, 6, 4, 7, 0, 5, 8, 8, 2, 3, 5, 2, 9, 4, 1, 1, 7, 6, 4, 7, 0, 5, 8, 8, 2, 3, 5, 2, 9, 4, 1, 1, 7, 6, 4, 7, 0, 5, 8, 8, 2, 3, 5, 2, 9
Offset: 3

Views

Author

Omar E. Pol, Jun 13 2018

Keywords

Comments

Decimal expansion of the internal angle of the regular heptadecagon (in degrees).
Period 16. - Jianing Song, Jun 22 2018

Examples

			158.82352941176470588235294117647058823529411764705882352941176470...
		

Crossrefs

Essentially the same as A007450. Cf. A019434, A210644, A210649, A303817.

Formula

Equals 180*15/17 = 158 + (14/17) = 180 - A303817.
From Chai Wah Wu, Dec 20 2019: (Start)
a(n) = a(n-1) - a(n-8) + a(n-9) for n > 12.
G.f.: x^3*(x^9 - 8*x^8 + 3*x^7 - 2*x^6 - x^5 + 6*x^4 - 3*x^2 - 4*x - 1)/((x - 1)*(x^8 + 1)). (End)

A303817 Decimal expansion of 360/17.

Original entry on oeis.org

2, 1, 1, 7, 6, 4, 7, 0, 5, 8, 8, 2, 3, 5, 2, 9, 4, 1, 1, 7, 6, 4, 7, 0, 5, 8, 8, 2, 3, 5, 2, 9, 4, 1, 1, 7, 6, 4, 7, 0, 5, 8, 8, 2, 3, 5, 2, 9, 4, 1, 1, 7, 6, 4, 7, 0, 5, 8, 8, 2, 3, 5, 2, 9, 4, 1, 1, 7, 6, 4, 7, 0, 5, 8, 8, 2, 3, 5, 2, 9, 4, 1, 1, 7, 6, 4, 7, 0, 5, 8, 8, 2, 3, 5, 2, 9, 4, 1, 1, 7, 6, 4, 7, 0, 5
Offset: 2

Views

Author

Omar E. Pol, Apr 30 2018

Keywords

Comments

Decimal expansion of the external angle of the regular heptadecagon (in degrees).
The repeating pattern [1, 7, 6, 4, 7, 0, 5, 8, 8, 2, 3, 5, 2, 9, 4, 1] is the same as A007450. - Michael B. Porter, Jun 11 2018
Period 16. - Eric Chen, Jun 14 2018
Essentially the same as A021089. - R. J. Mathar, Aug 16 2018

Examples

			21.176470588235294117647058823529411764705882352941176470588235294...
		

Crossrefs

Programs

Formula

Equals 21 + (3/17) = 180 - A303816.
From Chai Wah Wu, Dec 20 2019: (Start)
a(n) = a(n-1) - a(n-8) + a(n-9) for n > 11.
G.f.: x^2*(-2*x^9 - 7*x^8 + 7*x^7 - 3*x^6 + 2*x^5 + x^4 - 6*x^3 + x - 2)/((x - 1)*(x^8 + 1)). (End)

A370393 Decimal expansion of the area of a unit heptadecagon (17-gon).

Original entry on oeis.org

2, 2, 7, 3, 5, 4, 9, 1, 8, 9, 8, 4, 1, 6, 5, 5, 1, 4, 8, 2, 4, 2, 3, 7, 2, 3, 8, 7, 3, 9, 3, 7, 6, 3, 5, 7, 6, 1, 0, 6, 4, 1, 9, 9, 1, 4, 6, 9, 3, 3, 0, 9, 8, 8, 6, 0, 3, 5, 6, 5, 9, 4, 4, 0, 3, 9, 7, 2, 3, 2, 5, 1, 4, 8, 7, 9, 6, 7, 7, 7, 5, 7, 4, 7, 6, 4, 6
Offset: 2

Views

Author

Michal Paulovic, Feb 17 2024

Keywords

Comments

This constant multiplied by the square of the side length of a regular heptadecagon equals the area of that heptadecagon.
17^2 divided by this constant equals 68 * tan(Pi/17) = 12.71140300... which is the perimeter and the area of an equable heptadecagon with its side length 4 * tan(Pi/17) = 0.74772958... .
An equable rectangle with its perimeter and area = 17 has side lengths:
a = s^2/8 = (17 - sqrt(17)) / 4 = (17 - A010473) / 4 = 3.21922359...
b = 136/s^2 = (17 + sqrt(17)) / 4 = (17 + A010473) / 4 = 5.28077640...
where s is the parameter from the formula mentioned below.

Examples

			22.7354918984165514...
		

Crossrefs

Cf. A007450, A010473, A019684 (Pi/17), A210644 (cos(2*Pi/17)), A210649, A228787, A241243, A329592, A343061.

Programs

  • Maple
    evalf(17 / (4 * tan(Pi/17)), 100);
  • Mathematica
    RealDigits[17 / (4 * Tan[Pi/17]), 10, 100][[1]]
  • PARI
    17 / (4 * tan(Pi/17))

Formula

Equals 17 / (4 * tan(Pi/17)) = 17 / (4 * A343061).
Equals 1 / (4 * A007450 * A343061).
Equals 17 * cos(Pi/17) / (4 * sin(Pi/17)).
Equals 17 * A210649 / (4 * A241243).
Equals 17 * A210649 / (2 * A228787).
Equals 17 * cot(Pi/17) / 4.
Equals 17 * sqrt(4 / (s^2 - 2 * s - 4 * sqrt(17 + 3 * sqrt(17) - s - sqrt(17) * 16/s)) - 1/16) where s = sqrt(34 - 2 * sqrt(17)) = 4 * A329592.
The minimal polynomial is 4294967296*x^16 - 3103113871360*x^14 + 510054948143104*x^12 - 28954726431195136*x^10 + 653743432704327680*x^8 - 6011468019822067712*x^6 + 20881180982314634240*x^4 - 21552361799603318912*x^2 + 2862423051509815793.

A387451 Decimal expansion of cos(Pi/34).

Original entry on oeis.org

9, 9, 5, 7, 3, 4, 1, 7, 6, 2, 9, 5, 0, 3, 4, 5, 2, 1, 8, 7, 1, 1, 9, 1, 1, 7, 8, 9, 0, 5, 4, 8, 1, 7, 8, 3, 9, 0, 2, 7, 2, 4, 6, 1, 7, 6, 1, 6, 2, 9, 9, 1, 9, 8, 3, 7, 1, 9, 0, 3, 0, 1, 6, 3, 0, 8, 7, 0, 7, 1, 5, 9, 4, 1, 7, 8, 5, 3, 4, 0, 8, 0, 3, 7, 5, 4, 8, 4, 2, 4, 7, 3, 7, 0, 1, 2, 9, 8, 4, 1, 7, 0, 4, 5, 7, 8, 6, 4, 3, 1, 0, 9, 0, 1, 0, 7, 5, 6
Offset: 0

Views

Author

R. J. Mathar, Aug 29 2025

Keywords

Examples

			0.99573417629503452187...
		

Crossrefs

Cf. A210649.

Formula

Equals sin(8*Pi/17)= sqrt( (A210649+1)/2 ).
Largest of the 16 real-valued roots of 65536*x^16 -278528*x^14 +487424*x^12 -452608*x^10 +239360*x^8 -71808*x^6 +11424*x^4 -816*x^2 +17 =0.
Showing 1-9 of 9 results.