cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A228787 Decimal expansion of 2*sin(Pi/17), the ratio side/R in the regular 17-gon inscribed in a circle of radius R.

Original entry on oeis.org

3, 6, 7, 4, 9, 9, 0, 3, 5, 6, 3, 3, 1, 4, 0, 6, 6, 3, 1, 4, 8, 8, 1, 7, 6, 7, 9, 2, 4, 1, 4, 5, 5, 1, 6, 4, 9, 7, 8, 2, 7, 7, 0, 4, 7, 6, 8, 8, 9, 9, 8, 8, 1, 1, 7, 0, 1, 3, 0, 1, 7, 1, 5, 4, 9, 7, 8, 2, 9, 8, 5, 6, 5, 0, 6, 1, 0, 0, 3, 4, 6, 0, 6, 1, 2, 0, 2, 3, 9, 0, 2, 4, 2, 1, 4, 6, 0, 9, 7, 1, 8, 5, 9, 3, 5, 9, 5
Offset: 0

Views

Author

Wolfdieter Lang, Oct 07 2013

Keywords

Comments

s(17) := 2*sin(Pi/17) is an algebraic integer of degree 16 (over the rationals). Its minimal polynomial is 17 - 204*x^2 + 714*x^4 - 1122*x^6 + 935*x^8 - 442*x^10 + 119*x^12 - 17*x^14 + x^16. Its coefficients in the power basis of the algebraic number field Q(2*cos(Pi/34)) are [0, -15, 0, 140, 0, -378, 0, 450, 0, -275, 0, 90, 0, -15, 0, 1] (see row l = 8 of A228785). The decimal expansion of 2*cos(Pi/34) is given in A228788.
The continued fraction expansion starts with 0; 2, 1, 2, 1, 1, 2, 2, 2, 1, 5, 1, 3, 2, 2, 2, 1, 1, 43, 3, 1, 5, 2, 17, 2, ...
Gauss' formula for cos(2*Pi/17), given in A210644, can be inserted into s(17) = sqrt(2*(1 - cos(2*Pi/17))).
Since 17 is a Fermat prime, this number is constructible and can be written as an expression containing just integers, the basic four arithmetic operations, and square roots. See A003401 for more details. - Stanislav Sykora, May 02 2016

Examples

			0.367499035633140663148817679...
		

Crossrefs

Programs

Formula

s(17) = 2*sin(Pi/17) = 2*A241243.
Equals sqrt(34-2*sqrt(17)-2*sqrt(34-2*sqrt(17))-4*sqrt(17+3*sqrt(17)-sqrt(34-2*sqrt(17))-2*sqrt(34+2*sqrt(17))))/4. - Stanislav Sykora, May 02 2016

Extensions

Offset corrected by Rick L. Shepherd, Jan 01 2014

A343055 Decimal expansion of the imaginary part of i^(1/16), or sin(Pi/32).

Original entry on oeis.org

0, 9, 8, 0, 1, 7, 1, 4, 0, 3, 2, 9, 5, 6, 0, 6, 0, 1, 9, 9, 4, 1, 9, 5, 5, 6, 3, 8, 8, 8, 6, 4, 1, 8, 4, 5, 8, 6, 1, 1, 3, 6, 6, 7, 3, 1, 6, 7, 5, 0, 0, 5, 6, 7, 2, 5, 7, 2, 6, 4, 9, 7, 9, 8, 0, 9, 3, 8, 7, 3, 0, 2, 7, 8, 9, 0, 8, 7, 5, 3, 6, 8, 0, 7, 1, 1, 1, 0, 7, 7, 1, 4, 6, 3, 1, 8, 5, 5, 9, 5, 5, 4, 0, 7, 4, 2, 0, 6, 5, 2, 6, 4, 4, 4, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Comments

An algebraic number of degree 16 and denominator 2. - Charles R Greathouse IV, Jan 09 2022

Examples

			0.09801714032956060199419...
		

Crossrefs

sin(Pi/m): A010527 (m=3), A010503 (m=4), A019845 (m=5), A323601 (m=7), A182168 (m=8), A019829 (m=9), A019827 (m=10), A019824 (m=12), A232736 (m=14), A019821 (m=15), A232738 (m=16), A241243 (m=17), A019819 (m=18), A019818 (m=20), A343054 (m=24), A019815 (m=30), this sequence (m=32), A019814 (m=36).

Programs

  • Mathematica
    RealDigits[Sin[Pi/32], 10, 100, -1][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    imag(I^(1/16))
    
  • PARI
    sin(Pi/32)
    
  • PARI
    sqrt(2-sqrt(2+sqrt(2+sqrt(2))))/2
    
  • Sage
    numerical_approx(sin(pi/32), digits=123) # G. C. Greubel, Sep 30 2022

Formula

Equals (1/2) * sqrt(2-sqrt(2+sqrt(2+sqrt(2)))).
One of the 16 real roots of -128*x^2 +2688*x^4 -21504*x^6 +84480*x^8 +32768*x^16 -131072*x^14 +212992*x^12 -180224*x^10 +1 =0. - R. J. Mathar, Aug 29 2025
Equals A232738/(2*A343056). - R. J. Mathar, Sep 05 2025

A343061 Decimal expansion of tan(Pi/17).

Original entry on oeis.org

1, 8, 6, 9, 3, 2, 3, 9, 7, 1, 0, 7, 9, 7, 7, 1, 4, 5, 9, 4, 8, 0, 7, 6, 2, 8, 4, 1, 2, 3, 0, 7, 6, 7, 7, 0, 6, 0, 3, 7, 2, 4, 4, 1, 0, 7, 8, 1, 9, 1, 4, 5, 4, 9, 3, 4, 8, 4, 6, 3, 6, 7, 5, 7, 3, 1, 4, 7, 8, 9, 2, 6, 9, 7, 0, 9, 0, 3, 0, 9, 2, 4, 5, 3, 7, 5, 5, 4, 1, 0, 3, 5, 0, 2, 6, 5, 9, 4, 5, 5, 0, 8, 3, 2, 1, 4, 6, 5, 1, 4, 8, 5, 7, 4, 0, 1, 5
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Comments

Root of the equation 17 - 680*x^2 + 6188*x^4 - 19448*x^6 + 24310*x^8 - 12376*x^10 + 2380*x^12 - 136*x^14 + x^16 = 0. - Vaclav Kotesovec, Apr 04 2021

Examples

			0.18693239710797714594807628412307...
		

Crossrefs

Cf. A241243 (sin(Pi/17)), A210649 (cos(Pi/17)).

Programs

  • Mathematica
    RealDigits[Tan[Pi/17], 10, 100][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    tan(Pi/17)

Formula

Equals sqrt((-2*(-8 + sqrt(2*(15 + sqrt(17) - sqrt(34 - 2*sqrt(17)) + sqrt(2*(34 + 6*sqrt(17) - sqrt(578 - 34*sqrt(17)) + sqrt(34 - 2*sqrt(17)) + 8*sqrt(2*(17 + sqrt(17)))))))))/(15 + sqrt(17) + sqrt(34 - 2*sqrt(17)) + sqrt(2*(34 + 6*sqrt(17) + sqrt(578 - 34*sqrt(17)) - sqrt(34 - 2*sqrt(17)) - 8*sqrt(2*(17 + sqrt(17))))))). - Vaclav Kotesovec, Apr 04 2021

A370393 Decimal expansion of the area of a unit heptadecagon (17-gon).

Original entry on oeis.org

2, 2, 7, 3, 5, 4, 9, 1, 8, 9, 8, 4, 1, 6, 5, 5, 1, 4, 8, 2, 4, 2, 3, 7, 2, 3, 8, 7, 3, 9, 3, 7, 6, 3, 5, 7, 6, 1, 0, 6, 4, 1, 9, 9, 1, 4, 6, 9, 3, 3, 0, 9, 8, 8, 6, 0, 3, 5, 6, 5, 9, 4, 4, 0, 3, 9, 7, 2, 3, 2, 5, 1, 4, 8, 7, 9, 6, 7, 7, 7, 5, 7, 4, 7, 6, 4, 6
Offset: 2

Views

Author

Michal Paulovic, Feb 17 2024

Keywords

Comments

This constant multiplied by the square of the side length of a regular heptadecagon equals the area of that heptadecagon.
17^2 divided by this constant equals 68 * tan(Pi/17) = 12.71140300... which is the perimeter and the area of an equable heptadecagon with its side length 4 * tan(Pi/17) = 0.74772958... .
An equable rectangle with its perimeter and area = 17 has side lengths:
a = s^2/8 = (17 - sqrt(17)) / 4 = (17 - A010473) / 4 = 3.21922359...
b = 136/s^2 = (17 + sqrt(17)) / 4 = (17 + A010473) / 4 = 5.28077640...
where s is the parameter from the formula mentioned below.

Examples

			22.7354918984165514...
		

Crossrefs

Cf. A007450, A010473, A019684 (Pi/17), A210644 (cos(2*Pi/17)), A210649, A228787, A241243, A329592, A343061.

Programs

  • Maple
    evalf(17 / (4 * tan(Pi/17)), 100);
  • Mathematica
    RealDigits[17 / (4 * Tan[Pi/17]), 10, 100][[1]]
  • PARI
    17 / (4 * tan(Pi/17))

Formula

Equals 17 / (4 * tan(Pi/17)) = 17 / (4 * A343061).
Equals 1 / (4 * A007450 * A343061).
Equals 17 * cos(Pi/17) / (4 * sin(Pi/17)).
Equals 17 * A210649 / (4 * A241243).
Equals 17 * A210649 / (2 * A228787).
Equals 17 * cot(Pi/17) / 4.
Equals 17 * sqrt(4 / (s^2 - 2 * s - 4 * sqrt(17 + 3 * sqrt(17) - s - sqrt(17) * 16/s)) - 1/16) where s = sqrt(34 - 2 * sqrt(17)) = 4 * A329592.
The minimal polynomial is 4294967296*x^16 - 3103113871360*x^14 + 510054948143104*x^12 - 28954726431195136*x^10 + 653743432704327680*x^8 - 6011468019822067712*x^6 + 20881180982314634240*x^4 - 21552361799603318912*x^2 + 2862423051509815793.
Showing 1-4 of 4 results.