cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A175618 Decimal expansion of product_{n>=2} (1-n^(-7)).

Original entry on oeis.org

9, 9, 1, 6, 5, 4, 9, 5, 3, 4, 7, 2, 8, 3, 4, 4, 5, 7, 4, 0, 1, 3, 2, 3, 3, 7, 0, 5, 6, 9, 0, 2, 7, 4, 2, 5, 8, 6, 4, 2, 6, 8, 0, 8, 3, 5, 4, 1, 0, 3, 8, 5, 0, 3, 4, 9, 7, 6, 6, 3, 4, 9, 2, 1, 4, 1, 7, 0, 5, 1, 4, 3, 6, 3, 2, 8, 4, 3, 1, 9, 7, 1, 1, 8, 0, 2, 3, 9, 5, 0, 3, 8, 3, 0, 4, 3, 7, 9, 5, 5, 2, 1, 1, 9, 5
Offset: 0

Views

Author

R. J. Mathar, Jul 26 2010

Keywords

Examples

			0.99165495...
		

Crossrefs

Programs

  • Mathematica
    N[1/(7*Product[ Gamma[(-1)^(8*k/7 + 1)], {k, 1, 6}]), 105] // Re // RealDigits // First (* Jean-François Alcover, Feb 05 2013 *)
  • PARI
    exp(suminf(j=1, (1 - zeta(7*j))/j)) \\ Vaclav Kotesovec, Dec 15 2020

Formula

Equals 1/product_{t=1..6} Gamma(2-exp(2*Pi*i*t/7)), where i is the imaginary unit and 2*Pi/7 = A019695.
Equals exp(Sum_{j>=1} (1 - zeta(7*j))/j). - Vaclav Kotesovec, Dec 15 2020

A216606 Decimal expansion of 360/7.

Original entry on oeis.org

5, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7
Offset: 2

Views

Author

Paul Curtz, Sep 10 2012

Keywords

Comments

A020806 preceded by a 5.
Number of degrees in the exterior angle of an equilateral heptagon. Since 1969, used in many (orbiform or Reuleaux) heptagonal coins. Zambia has a natural heptagonal coin. Brazil and Costa Rica have a coin with the natural heptagon inscribed in the coin's disk.

Examples

			51.42857...
		

Crossrefs

Programs

Formula

a(n) = 50 + 10*A020806(n).
After 5, of period 6: repeat [1, 4, 2, 8, 5, 7].
From Wesley Ivan Hurt, Jun 28 2016: (Start)
G.f.: x^3*(5-4*x+3*x^2+3*x^3+2*x^4) / (1-x+x^3-x^4).
a(n) = 9/2 + 11*cos(n*Pi)/6 + 5*cos(n*Pi/3)/3 + sqrt(3)*sin(n*Pi/3), n>2.
a(n) = a(n-1) - a(n-3) + a(n-4) for n>6, a(n) = a(n-6) for n>8. (End)
Showing 1-2 of 2 results.