A019810 Decimal expansion of sine of 1 degree.
0, 1, 7, 4, 5, 2, 4, 0, 6, 4, 3, 7, 2, 8, 3, 5, 1, 2, 8, 1, 9, 4, 1, 8, 9, 7, 8, 5, 1, 6, 3, 1, 6, 1, 9, 2, 4, 7, 2, 2, 5, 2, 7, 2, 0, 3, 0, 7, 1, 3, 9, 6, 4, 2, 6, 8, 3, 6, 1, 2, 4, 2, 7, 6, 4, 0, 5, 9, 7, 3, 8, 4, 2, 0, 3, 9, 2, 8, 0, 7, 0, 0, 4, 2, 0, 0, 1, 9, 2, 6, 7, 9, 1, 0, 2, 1, 3, 4, 6, 9, 1, 4, 4, 8, 8
Offset: 0
Examples
0.01745240643728351281941897851631...
References
- Mohammad K. Azarian, Forty-Five Nested Equilateral Triangles and cosecant of 1 degree, Problem 813, College Mathematics Journal, Vol. 36, No. 5, November 2005, pp. 413-414. Solution published in Vol. 37, No. 5, November 2006, pp. 394-395.
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Mohammad K. Azarian, A Study of Risa-la al-Watar wa'l Jaib ("The Treatise on the Chord and Sine"), Forum Geometricorum, Volume 15 (2015) 229-242. Mathematical Reviews, MR 3418854 (Reviewed), Zentralblatt MATH, Zbl 1328.01015.
- Index entries for algebraic numbers, degree 48
Programs
-
Mathematica
Join[{0},RealDigits[N[Sin[Pi/180],200]][[1]]] (* and/or *) Join[{0},RealDigits[N[Sin[1 Degree],200]][[1]]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
-
PARI
sin(Pi/180)
-
PARI
real((I^(89/90) - I^(91/90))/2) \\ (imaginary part is not exactly zero only because of finite precision) Rick L. Shepherd, Apr 12 2017
Formula
Equals sin(Pi/180) = cos(89*Pi/180) = (i^(89/90) - i^(91/90))/2 (the last from WolframAlpha, rearranged). - Rick L. Shepherd, Apr 12 2017
Extensions
More terms from James Sellers, Jan 19 2000
Comments