A019827 Decimal expansion of sin(Pi/10) (angle of 18 degrees).
3, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8
Offset: 0
Examples
0.30901699437494742410229341718281905886015458990288143106772431135263...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.9 and 8.19, pp. 66, 535.
Links
- Zak Seidov, Table of n, a(n) for n = 0..999
- Hideyuki Ohtsuka, Problem B-1237, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 56, No. 4 (2018), p. 366; A Telescoping Product, Solution to Problem B-1237 by Steve Edwards, ibid., Vol. 57, No. 4 (2019), pp. 369-370.
- Wikipedia, Exact trigonometric constants.
- Index entries for algebraic numbers, degree 2.
Programs
-
Mathematica
RealDigits[Sin[18 Degree], 10, 108][[1]] (* Alonso del Arte, Apr 20 2015 *)
-
PARI
sin(Pi/10) \\ Charles R Greathouse IV, Feb 03 2015
-
PARI
polrootsreal(4*x^2 + 2*x - 1)[2] \\ Charles R Greathouse IV, Feb 03 2015
Formula
Equals (sqrt(5) - 1)/4 = (phi - 1)/2 = 1/(2*phi), with phi from A001622.
Equals 1/(1 + sqrt(5)). - Omar E. Pol, Nov 15 2007
Equals 1/A134945. - R. J. Mathar, Jan 17 2021
Equals Product_{k>=1} 1 - 1/(phi + phi^k), where phi is the golden ratio (A001622) (Ohtsuka, 2018). - Amiram Eldar, Dec 02 2021
Equals Product_{k>=1} (1 - 1/A055588(k)). - Amiram Eldar, Nov 28 2024
This^2 + A019881^2 = 1. - R. J. Mathar, Aug 31 2025
Comments