cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A019887 Decimal expansion of sine of 78 degrees.

Original entry on oeis.org

9, 7, 8, 1, 4, 7, 6, 0, 0, 7, 3, 3, 8, 0, 5, 6, 3, 7, 9, 2, 8, 5, 6, 6, 7, 4, 7, 8, 6, 9, 5, 9, 9, 5, 3, 2, 4, 5, 9, 7, 3, 7, 8, 0, 8, 8, 6, 2, 6, 7, 7, 1, 0, 7, 8, 8, 5, 1, 7, 7, 6, 6, 3, 6, 4, 0, 5, 9, 6, 8, 3, 3, 1, 2, 0, 0, 9, 5, 1, 2, 1, 9, 9, 9, 7, 5, 8, 5, 2, 5, 4, 5, 4, 7, 8, 5, 6, 3, 6
Offset: 0

Views

Author

Keywords

Comments

Equals sin(13*Pi/30). - Wesley Ivan Hurt, Aug 31 2014
A quartic number with denominator 2 and minimal polynomial 16x^4 + 8x^3 - 16x^2 - 8x + 1. - Charles R Greathouse IV, Aug 27 2017

Examples

			0.9781476007338056379285667478695995324597378088626771078851...
		

Programs

Formula

Equals cos(Pi/15) = [sqrt(5)-1]*[1+sqrt(3)*sqrt{5+2*sqrt(5)}]/8 = [A002163-1]*[1+A002194*A019970]/8. - R. J. Mathar, Jun 18 2006
Equals 2*A019848*A019860. - R. J. Mathar, Jan 17 2021
4*this^3 -3*this = A019863. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/10,1/10 ; 1/2 ; 3/4). - R. J. Mathar, Aug 31 2025
A root of 16*x^4+8*x^3-16*x^2-8*x+1=0. - R. J. Mathar, Aug 31 2025

A019949 Decimal expansion of tangent of 51 degrees.

Original entry on oeis.org

1, 2, 3, 4, 8, 9, 7, 1, 5, 6, 5, 3, 5, 0, 5, 1, 3, 9, 8, 5, 5, 6, 1, 7, 4, 6, 9, 5, 3, 7, 5, 9, 3, 5, 1, 4, 0, 0, 5, 3, 6, 2, 5, 5, 8, 4, 0, 7, 7, 9, 7, 6, 5, 3, 6, 4, 2, 1, 2, 5, 9, 2, 0, 8, 8, 4, 3, 7, 5, 7, 3, 0, 1, 3, 4, 7, 7, 4, 0, 2, 1, 4, 1, 2, 3, 1, 2, 8, 7, 0, 4, 0, 6, 4, 3, 5, 3, 8, 1
Offset: 1

Views

Author

Keywords

Comments

Also the decimal expansion of cotangent of 39 degrees. - Ivan Panchenko, Sep 01 2014

Examples

			1.2348971565350513985561746953759351400536255840779765364212592...
		

Crossrefs

Cf. A019860 (sine of 51 degrees).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Tan(17*Pi(R)/60); // G. C. Greubel, Nov 23 2018
    
  • Mathematica
    RealDigits[Tan[17*Pi/60], 10, 100][[1]] (* G. C. Greubel, Nov 23 2018 *)
    RealDigits[Tan[51 Degree],10,120][[1]] (* Harvey P. Dale, Jan 18 2021 *)
  • PARI
    default(realprecision, 100); tan(17*Pi/60) \\ G. C. Greubel, Nov 23 2018
    
  • Sage
    numerical_approx(tan(17*pi/60), digits=100) # G. C. Greubel, Nov 23 2018

Formula

Equals cot(13*Pi/60) = ((2+sqrt(3))*(3-sqrt(5)) -2)*(2 + sqrt(2*(5 + sqrt(5))))/4. - G. C. Greubel, Nov 23 2018
Showing 1-2 of 2 results.