A019916 Decimal expansion of tan(Pi/10) (angle of 18 degrees).
3, 2, 4, 9, 1, 9, 6, 9, 6, 2, 3, 2, 9, 0, 6, 3, 2, 6, 1, 5, 5, 8, 7, 1, 4, 1, 2, 2, 1, 5, 1, 3, 4, 4, 6, 4, 9, 5, 4, 9, 0, 3, 4, 7, 1, 5, 2, 1, 4, 7, 5, 1, 0, 0, 3, 0, 7, 8, 0, 4, 7, 1, 9, 1, 3, 6, 6, 7, 2, 9, 0, 0, 9, 6, 0, 7, 4, 4, 9, 4, 8, 3, 2, 2, 6, 8, 7, 7, 3, 5, 4, 4, 6, 9, 6, 5, 0, 5, 0
Offset: 0
Examples
0.3249196962329063261558714122151344649549034715214751003078047191...
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Wikipedia, Exact trigonometric constants
- Index entries for algebraic numbers, degree 4.
Programs
-
Mathematica
RealDigits[Tan[18 Degree],10,120][[1]] (* Harvey P. Dale, Mar 07 2012 *)
-
PARI
tan(Pi/10) \\ Michel Marcus, Jan 08 2018
-
PARI
polrootsreal(5*x^4-10*x^2+1)[3] \\ Charles R Greathouse IV, Feb 04 2025
Formula
Equals tan((phi - 1)/sqrt(2 + phi)) = (1/5)*(sqrt(3 - phi))^3 = (3 - phi)*sqrt(3 - phi)/5 = sqrt(7 - 4*phi)/(2*phi - 1), with phi from A001622. - Wolfdieter Lang, Jan 08 2018
Equals Product_{k>=0} ((5*k + 1)/(5*k + 4))^(-1)^(k) = Product_{k>=0} A090771(k)/A090773(k). - Antonio GraciĆ” Llorente, Mar 24 2024
Comments