cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A022521 a(n) = (n+1)^5 - n^5.

Original entry on oeis.org

1, 31, 211, 781, 2101, 4651, 9031, 15961, 26281, 40951, 61051, 87781, 122461, 166531, 221551, 289201, 371281, 469711, 586531, 723901, 884101, 1069531, 1282711, 1526281, 1803001, 2115751, 2467531
Offset: 0

Views

Author

Keywords

Comments

Last digit of a(n) is always 1. Last two digits of a(n) (i.e., a(n) mod 100) are repeated periodically with palindromic part of period 20 {1,31,11,81,1,51,31,61,81,51,51,81,61,31,51,1,81,11,31,1}. Last three digits of a(n) (i.e., a(n) mod 1000) are repeated periodically with palindromic part of period 200. - Alexander Adamchuk, Aug 11 2006
In Conway and Guy, these numbers are called nexus numbers of order 5. - M. F. Hasler, Jan 27 2013
Numbers that can be arranged in a triangular-antitegmatic icosachoron (the 4D version of "rhombic dodecahedal numbers" (A005917)). - Steven Lu, Mar 28 2023

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

First differences of A000584.
Column k=4 of array A047969.

Programs

Formula

a(n) = A003215(n) + 24 * A006322(n). - Xavier Acloque, Oct 11 2003
G.f.: (-1-x^4-26*x^3-66*x^2-26*x)/(x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
G.f.: polylog(-5, x)*(1-x)/x. See the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021
Sum_{n>=0} 1/a(n) = c1*tanh(c2/2) - c2*tanh(c1/2), where c1 = tan(3*Pi/10)*Pi and c2 = tan(Pi/10)*Pi. - Amiram Eldar, Jan 27 2022

A375068 Decimal expansion of the sagitta of a regular pentagon with unit side length.

Original entry on oeis.org

1, 6, 2, 4, 5, 9, 8, 4, 8, 1, 1, 6, 4, 5, 3, 1, 6, 3, 0, 7, 7, 9, 3, 5, 7, 0, 6, 1, 0, 7, 5, 6, 7, 2, 3, 2, 4, 7, 7, 4, 5, 1, 7, 3, 5, 7, 6, 0, 7, 3, 7, 5, 5, 0, 1, 5, 3, 9, 0, 2, 3, 5, 9, 5, 6, 8, 3, 3, 6, 4, 5, 0, 4, 8, 0, 3, 7, 2, 4, 7, 4, 1, 6, 1, 3, 4, 3, 8, 6, 7
Offset: 0

Views

Author

Paolo Xausa, Jul 29 2024

Keywords

Examples

			0.1624598481164531630779357061075672324774517357607...
		

Crossrefs

Cf. A300074 (circumradius), A375067 (apothem), A102771 (area).
Cf. sagitta of other polygons with unit side length: A020769 (triangle), A174968 (square), A375069 (hexagon), A374972 (heptagon), A375070 (octagon), A375153 (9-gon), A375189 (10-gon), A375192 (11-gon), A375194 (12-gon).

Programs

Formula

Equals tan(Pi/10)/2 = sqrt(1-2/sqrt(5))/2 = A019916/2.
Equals A300074 - A375067.
Equals A179050/5 = sqrt(A229760)/10. - Hugo Pfoertner, Jul 30 2024

A381155 Decimal expansion of the isoperimetric quotient of a regular 10-gon.

Original entry on oeis.org

9, 6, 6, 8, 8, 2, 7, 9, 9, 0, 4, 6, 4, 0, 2, 5, 4, 0, 3, 2, 8, 1, 8, 3, 2, 1, 9, 1, 8, 2, 7, 5, 2, 9, 8, 8, 4, 6, 9, 8, 6, 8, 2, 4, 1, 0, 8, 4, 4, 0, 4, 2, 9, 1, 1, 0, 9, 9, 3, 6, 4, 1, 5, 1, 8, 4, 4, 7, 6, 9, 2, 9, 5, 1, 0, 1, 3, 1, 0, 2, 1, 4, 3, 7, 9, 2, 2, 0, 5, 5
Offset: 0

Views

Author

Paolo Xausa, Feb 15 2025

Keywords

Comments

For the definition of isoperimetric quotient, see A381152.

Examples

			0.96688279904640254032818321918275298846986824108440...
		

Crossrefs

Cf. isoperimetric quotient of other regular polygons: A073010 (triangle), A003881 (square), A381152 (pentagon), A093766 (hexagon), A381153 (heptagon), A196522 (octagon), A381154 (9-gon), A381156 (11-gon), A381157 (12-gon).

Programs

  • Mathematica
    First[RealDigits[Pi/(10*Tan[Pi/10]), 10, 100]]

Formula

Equals Pi/(10*tan(Pi/10)) = Pi/(10*A019916).
Equals (1/25)*Pi*A178816.

A343057 Decimal expansion of tan(Pi/32).

Original entry on oeis.org

0, 9, 8, 4, 9, 1, 4, 0, 3, 3, 5, 7, 1, 6, 4, 2, 5, 3, 0, 7, 7, 1, 9, 7, 5, 2, 1, 2, 9, 1, 3, 2, 7, 4, 3, 2, 2, 9, 3, 0, 5, 2, 4, 5, 0, 6, 9, 9, 2, 0, 2, 6, 9, 5, 9, 8, 0, 9, 1, 6, 1, 2, 1, 1, 3, 4, 4, 1, 9, 4, 3, 8, 7, 3, 0, 8, 1, 2, 9, 7, 2, 2, 5, 6, 4, 8, 5, 2, 1, 4, 1, 8, 0, 3, 7, 3, 6, 0, 0, 1, 3, 7, 0, 6, 7, 1, 6, 9, 7, 7, 9, 1, 7, 6, 5
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Examples

			0.098491403357164253077197...
		

Crossrefs

Cf. A343055 (sin(Pi/32)), A343056 (cos(Pi/32)).
tan(Pi/m): A002194 (m=3), A019934 (m=5), A020760 (m=6), A343058 (m=7), A188582 (m=8), A019918 (m=9), A019916 (m=10), A019913 (m=12), A343059 (m=14), A019910 (m=15), A343060 (m=16), A343061 (m=17), A019908 (m=18), A019907 (m=20), A343062 (m=24), A019904 (m=30), A343057 (m=32), A019903 (m=36).

Programs

  • Magma
    R:= RealField(125); Tan(Pi(R)/32); // G. C. Greubel, Sep 30 2022
    
  • Mathematica
    RealDigits[Tan[Pi/32], 10, 120, -1][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    tan(Pi/32)
    
  • PARI
    sqrt((2-sqrt(2+sqrt(2+sqrt(2))))/(2+sqrt(2+sqrt(2+sqrt(2)))))
    
  • SageMath
    numerical_approx(tan(pi/32), digits=125) # G. C. Greubel, Sep 30 2022

Formula

Equals sqrt( (2-sqrt(2+sqrt(2+sqrt(2))))/(2+sqrt(2+sqrt(2+sqrt(2)))) ).

A341859 Decimal expansion of 4 - (8/5)*sqrt(5).

Original entry on oeis.org

4, 2, 2, 2, 9, 1, 2, 3, 6, 0, 0, 0, 3, 3, 6, 4, 8, 5, 7, 4, 5, 3, 2, 2, 1, 3, 0, 0, 2, 9, 9, 5, 8, 0, 2, 3, 2, 9, 5, 0, 1, 0, 6, 2, 4, 6, 2, 1, 5, 5, 8, 8, 4, 1, 1, 6, 6, 5, 6, 4, 4, 0, 7, 3, 4, 3, 1, 6, 6, 5, 1, 8, 9, 7, 9, 5, 1, 2, 1, 6, 0, 9, 3, 6, 9, 3, 6, 9, 4, 6, 5, 9, 3, 9, 4, 8, 3, 6
Offset: 0

Views

Author

Gleb Koloskov, Mar 07 2021

Keywords

Comments

In a triangle inscribed in a unit circle this is the maximal value of its inradius, such that a minimal closed Steiner chain of circles (10 circles) can be sandwiched between the incircle and circumcircle of the triangle.
It can be found as follows.
The squared distance between the centers of the two chain-defining circles is known to be d^2 = (R-r)^2 - 4*r*R*tan(Pi/n)^2.
On the other hand, the squared distance between the circumcenter and the incenter of triangle is known to be d^2 = R*(R-2*r).
Thus, in order to make a valid closed chain of circles, the inradius of triangle inscribed in the unit circle must be equal to 4*tan(Pi/n)^2.
Given that the maximum of such inradius is 0.5, the minimal number of chained circles is n=10, which gives the maximal value r = 4*tan(Pi/10)^2 = 0.42... < 0.5.

Examples

			0.4222912360003364857453221300299580232950106246215588411665644073...
		

References

  • Liang-Shin Hahn. Complex Numbers and Geometry (Mathematical Association of America Textbooks). The Mathematical Association of America, 1994, 140-141.

Crossrefs

Programs

  • Mathematica
    RealDigits[4*Tan[18 Degree]^2, 10, 120][[1]]
  • PARI
    4-8/5*sqrt(5)

Formula

Equals 4*A019916^2 = 4*tan(Pi/10)^2 = 4 - (8/5)*sqrt(5) = (4/5)*(7 - 4*phi) = (4/5)*(7 - 4*A001622), where phi is the golden ratio from A001622.

A348757 Decimal expansion of the area of a regular pentagram inscribed in a unit-radius circle.

Original entry on oeis.org

1, 1, 2, 2, 5, 6, 9, 9, 4, 1, 4, 4, 8, 9, 6, 3, 4, 3, 1, 1, 0, 4, 8, 6, 2, 8, 7, 9, 4, 9, 3, 8, 1, 6, 9, 6, 8, 9, 4, 8, 0, 3, 1, 2, 0, 5, 8, 0, 2, 7, 0, 8, 7, 9, 8, 4, 8, 6, 1, 9, 6, 5, 8, 5, 4, 2, 2, 0, 1, 8, 8, 9, 1, 1, 9, 7, 5, 5, 2, 0, 6, 6, 4, 9, 1, 0, 7, 6, 4, 4, 3, 7, 7, 3, 3, 5, 6, 4, 5, 1, 2, 2, 1, 0, 3
Offset: 1

Views

Author

Amiram Eldar, Nov 12 2021

Keywords

Comments

An algebraic number of degree 4. The smaller of the two positive roots of the equation 16*x^4 - 2500*x^2 + 3125 = 0.

Examples

			1.12256994144896343110486287949381696894803120580270...
		

References

  • Robert B. Banks, Slicing Pizzas, Racing Turtles, and Further Adventures in Applied Mathematics, Princeton University Press, 2012, p. 15.

Crossrefs

Programs

  • Mathematica
    RealDigits[5*Sin[Pi/5]/GoldenRatio^2, 10, 100][[1]]

Formula

Equals 5*sin(Pi/5)/phi^2, where phi is the golden ratio (A001622).
Equals 5/(cot(Pi/5) + cot(Pi/10)).
Equals 10*tan(Pi/10)/(3 - tan(Pi/10)^2).
Equals (5/2)*sqrt((25 -11*sqrt(5))/2).
Equals 5*(5 - sqrt(5))/(4*sqrt(5 + 2*sqrt(5))) = A094874 * A179050 = 10 * A094874 / A344172.
Showing 1-6 of 6 results.