A020082
a(n) = floor( Gamma(n + 4/5)/Gamma(4/5) ).
Original entry on oeis.org
1, 0, 1, 4, 15, 73, 426, 2900, 22624, 199094, 1951127, 21072175, 248651668, 3182741351, 43921830647, 650043093588, 10270680878693, 172547438762055, 3071344409964594, 57741274907334370, 1143277243165220533
Offset: 0
-
[Truncate(Gamma(n + 4/5)/Gamma(4/5)): n in [0..30]]; // G. C. Greubel, Nov 19 2018
-
Digits:= 64: x:=4/5: f:= proc(n,x) trunc(GAMMA(n+x)/GAMMA(x)); end;
seq(floor(pochhammer(4/5,n)), n = 0..25); # G. C. Greubel, Nov 17 2019
-
Floor[Pochhammer[4/5, Range[0, 25]]] (* G. C. Greubel, Nov 19 2018 *)
-
vector(26, n, my(x=4/5); gamma(n-1+x)\gamma(x) ) \\ G. C. Greubel, Nov 19 2018
-
[int(gamma(n + 4/5)/gamma(4/5)) for n in range(30)] # G. C. Greubel, Nov 19 2018
A020083
a(n) = floor( Gamma(n + 3/5)/Gamma(3/5) ).
Original entry on oeis.org
1, 0, 0, 2, 8, 41, 231, 1527, 11610, 99850, 958561, 10160755, 117864768, 1485096081, 20197306708, 294880677941, 4600138575887, 76362300359740, 1343976486331425, 24997962645764522, 489960067856984638
Offset: 0
-
[Truncate(Gamma(n + 3/5)/Gamma(3/5)): n in [0..30]]; // G. C. Greubel, Nov 19 2018
-
Digits:= 64: x:=3/5: f:= proc(n,x) trunc(GAMMA(n+x)/GAMMA(x)); end;
seq(floor(pochhammer(3/5,n)), n = 0..25); # G. C. Greubel, Nov 17 2019
-
Floor[Pochhammer[3/5, Range[0, 25]]] (* G. C. Greubel, Nov 19 2018 *)
-
vector(26, n, my(x=3/5); gamma(n-1+x)\gamma(x) ) \\ G. C. Greubel, Nov 19 2018
-
[int(gamma(n + 3/5)/gamma(3/5)) for n in range(30)] # G. C. Greubel, Nov 19 2018
A020084
a(n) = floor( Gamma(n + 2/5)/Gamma(2/5) ).
Original entry on oeis.org
1, 0, 0, 1, 4, 20, 108, 694, 5142, 43193, 406016, 4222569, 48137291, 596902408, 7998492273, 115178288736, 1773745646539, 29089428603255, 506156057696641, 9313271461618195, 180677466355392995, 3685820313650017111
Offset: 0
-
[Truncate(Gamma(n + 2/5)/Gamma(2/5)): n in [0..30]]; // G. C. Greubel, Nov 19 2018
-
Digits:= 64: x:=2/5: f:= proc(n,x) trunc(GAMMA(n+x)/GAMMA(x)); end;
seq(floor(pochhammer(2/5,n)), n = 0..25); # G. C. Greubel, Nov 17 2019
-
Floor[Pochhammer[2/5, Range[0, 25]]] (* G. C. Greubel, Nov 19 2018 *)
-
vector(26, n, my(x=2/5); gamma(n-1+x)\gamma(x) ) \\ G. C. Greubel, Nov 19 2018
-
[int(gamma(n + 2/5)/gamma(2/5)) for n in range(30)] # G. C. Greubel, Nov 19 2018
A020040
a(n) = round( Gamma(n+1/5)/Gamma(1/5) ).
Original entry on oeis.org
1, 0, 0, 1, 2, 7, 37, 229, 1647, 13507, 124269, 1267543, 14196477, 173197024, 2286200718, 32464050199, 493453563029, 7993947721071, 137495900802424, 2502425394604114, 48046567576398986, 970540665043259525
Offset: 0
-
[Round(Gamma(n+1/5)/Gamma(1/5)): n in [0..30]]; // G. C. Greubel, Dec 06 2019
-
Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end;
seq( round(pochhammer(1/5, n)), n=0..30); # G. C. Greubel, Dec 06 2019
-
Table[Round[Pochhammer[1/5,n]], {n,0,30}] (* G. C. Greubel, Dec 06 2019 *)
-
x=1/5; vector(30, n, round(gamma(n-1+x)/gamma(x)) ) \\ G. C. Greubel, Dec 06 2019
-
[round(rising_factorial(1/5,n)) for n in (0..30)] # G. C. Greubel, Dec 06 2019
Showing 1-4 of 4 results.
Comments