cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A124101 Sum_(x^i*y^j*z^k) with i + j + k = m and (x, y, z) = the primitive Pythagorean triple (7, 24, 25).

Original entry on oeis.org

1, 56, 2193, 74200, 2322401, 69294456, 2002105393, 56527314200, 1568580924801, 42944117148856, 1163113467888593, 31226091614554200, 832210422221287201, 22042655816999563256, 580763882378429351793, 15231836751090861794200, 397901671409627547409601, 10358079848649863260537656
Offset: 0

Views

Author

Keywords

Examples

			a(2) = 2193 because x^2 + y^2 + z^2 + x*y + x*z + y*z = 7^2 + 24^2 + 25^2 + 7*24 + 7*25 + 24*25 = 2193 and x^2 + y^2 = z^2.
		

References

  • G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 197.

Crossrefs

Programs

  • Magma
    [5^(2*n+4)/18 + 7^(n+2)/306 - 2^(3*n+6)*3^(n+2)/17 : n in [0..20]]; // Wesley Ivan Hurt, Sep 26 2016
    
  • Magma
    I:=[1,56,2193]; [n le 3 select I[n] else 56*Self(n-1)-943*Self(n-2)+4200*Self(n-3): n in [1..90]]; // Vincenzo Librandi, Aug 18 2018
  • Maple
    seq(sum(7^(m-n)*sum(24^p*25^(n-p),p=0..n),n=0..m),m=0..N);
  • Mathematica
    CoefficientList[Series[1/((1 - 7 x) (1 - 24 x) (1 - 25 x)), {x, 0, 15}], x] (* Michael De Vlieger, Sep 25 2016 *)
    LinearRecurrence[{56, -943, 4200}, {1, 56, 2193}, 50] (* Vincenzo Librandi, Aug 18 2018 *)
  • PARI
    x='x+O('x^99); Vec(1/((1-7*x)*(1-24*x)*(1-25*x))) \\ Altug Alkan, Sep 26 2016
    

Formula

a(m) = (x^(m+2)*(z-y) + y^(m+2)*(x-z) + z^(m+2)*(y-x))/((x-y)*(y-z)*(z-x)).
From Chai Wah Wu, Sep 24 2016: (Start)
a(n) = 56*a(n-1) - 943*a(n-2) + 4200*a(n-3) for n > 2.
G.f.: 1/((1 - 7*x)*(1 - 24*x)*(1 - 25*x)). (End)
a(n) = 5^(2*n+4)/18 + 7^(n+2)/306 - 2^(3*n+6)*3^(n+2)/17. - Vaclav Kotesovec, Sep 25 2016

A124099 Sum_(x^i*y^j*z^k) with i + j + k = m and (x, y, z) = the primitive Pythagorean triple (5, 12, 13).

Original entry on oeis.org

1, 30, 619, 10920, 177061, 2726130, 40547359, 588485820, 8387148121, 117876868230, 1638536364499, 22574666496720, 308755233696781, 4197234089634330, 56765041887676039, 764357559726523620
Offset: 0

Views

Author

Keywords

Examples

			a(2)=619 because Sum_(x^i*y^j*z^k) = x^2 + y^2 + z^2 + x*y + x*z + y*z = 5^2 + 12^2 + 13^2 + 5*12 + 5*13 + 12*13 = 619 and x^2 + y^2 = z^2.
		

References

  • G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 196.

Crossrefs

Programs

  • Maple
    seq(sum(5^(m-n)*sum(12^p*13^(n-p),p=0..n),n=0..m),m=0..N);

Formula

a(m) = (x^(m+2)*(z-y)+y^(m+2)*(x-z)+z^(m+2)*(y-x))/((x-y)*(y-z)*(z-x)).
From Chai Wah Wu, Sep 24 2016: (Start)
a(n) = 30*a(n-1) - 281*a(n-2) + 780*a(n-3) for n > 2.
G.f.: 1/((1 - 5*x)*(1 - 12*x)*(1 - 13*x)). (End)
Showing 1-2 of 2 results.