A020481 Least p with p, q both prime, p+q = 2n.
2, 3, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 5, 7, 3, 3, 5, 7, 3, 5, 3, 3, 5, 3, 5, 7, 3, 5, 7, 3, 3, 5, 7, 3, 5, 3, 3, 5, 7, 3, 5, 3, 5, 7, 3, 5, 7, 19, 3, 5, 3, 3, 5, 3, 3, 5, 3, 5, 7, 13, 11, 13, 19, 3, 5, 3, 5, 7, 3, 3, 5, 7, 11, 11, 3, 3, 5, 7, 3, 5, 7, 3, 5, 3, 5, 7, 3, 5, 7, 3, 3, 5, 7, 11, 11, 3, 3, 5, 3, 3, 5, 7
Offset: 2
Keywords
Links
Crossrefs
Cf. A020482.
Programs
-
Haskell
a020481 n = head [p | p <- a000040_list, a010051' (2 * n - p) == 1] -- Reinhard Zumkeller, Jul 07 2014, Mar 03 2014
-
Mathematica
a[n_] := For[p = 2, True, p = NextPrime[p], If[PrimeQ[2n-p], Return[p]]]; Table[a[n], {n, 2, 103}] (* Jean-François Alcover, Jul 31 2018 *)
-
PARI
A020481(n) = {local(np);np=1;while(!isprime(2*n-prime(np)),np++);prime(np)} \\ Michael B. Porter, Dec 11 2009
-
PARI
A020481(n)=forprime(p=1,n,isprime(2*n-p)&return(p)) \\ M. F. Hasler, Sep 18 2012
-
Python
from sympy import isprime, primerange def A020481(n): return next(filter(lambda p:isprime((n<<1)-p),primerange(2*n))) # Chai Wah Wu, Nov 19 2024
Formula
a(n) = n - A047949(n). - Jason Kimberley, Oct 09 2012
Comments