cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020519 11th cyclotomic polynomial evaluated at powers of 2.

Original entry on oeis.org

11, 2047, 1398101, 1227133513, 1172812402961, 1162219258676257, 1171221845949812801, 1189887617730934227073, 1213666705181745367548161, 1240362622532514091484054017, 1268889750375080065623288448001, 1298708349570020393652962442872833
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory,cyclotomic):seq(cyclotomic(11,2^i),i=0..24);
  • Mathematica
    Table[Total[x^Range[0,10]],{x,2^Range[0,10]}] (* Harvey P. Dale, Mar 05 2014 *)
  • PARI
    a(n) = polcyclo(11, 2^n); \\ Michel Marcus, Apr 12 2014

Formula

G.f.: -(72022409665839104*x^10 -95936100375199744*x^9 +41035167933923328*x^8 -7266644321632256*x^7 +581441424424960*x^6 -21804053415936*x^5 +388080675136*x^4 -3261182144*x^3 +12564486*x^2 -20470*x +11) / ((x -1)*(2*x -1)*(4*x -1)*(8*x -1)*(16*x -1)*(32*x -1)*(64*x -1)*(128*x -1)*(256*x -1)*(512*x -1)*(1024*x -1)). - Colin Barker, Feb 14 2015
a(n) = 1+2^n+4^n+8^n+16^n+32^n+64^n+128^n+256^n+512^n+1024^n. - Colin Barker, Feb 15 2015
a(n) = A060885(A000079(n)). - Michel Marcus, Apr 06 2016