A020555 Number of multigraphs on n labeled edges (with loops). Also number of genetically distinct states amongst n individuals.
1, 2, 9, 66, 712, 10457, 198091, 4659138, 132315780, 4441561814, 173290498279, 7751828612725, 393110572846777, 22385579339430539, 1419799938299929267, 99593312799819072788, 7678949893962472351181, 647265784993486603555551, 59357523410046023899154274
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Jul 18 2018: (Start) The a(2) = 9 multiset partitions of {1, 1, 2, 2}: (1122), (1)(122), (2)(112), (11)(22), (12)(12), (1)(1)(22), (1)(2)(12), (2)(2)(11), (1)(1)(2)(2). (End)
References
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
- E. Keith Lloyd, Math. Proc. Camb. Phil. Soc., vol. 103 (1988), 277-284.
- A. Murthy, Generalization of partition function, introducing Smarandache factor partitions. Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..310 (first 101 terms from Vincenzo Librandi)
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
- Marko Riedel et al., Set partitions of {1,1,2,2,...,n,n}
- E. A. Thompson, Gene identities and multiple relationships. Biometrics 30 (1974), 667-680. See Table 5.
Crossrefs
Programs
-
Maple
B := n -> combinat[bell](n): P := proc(m,n) local k; global B; option remember; if n = 0 then B(m) else (1/2)*( P(m+2,n-1) + P(m+1,n-1) + add( binomial(n-1,k)*P(m,k), k=0..n-1) ); fi; end; r:=m->[seq(P(m,n),n=0..20)]; r(0); # N. J. A. Sloane, Dec 30 2018
-
Mathematica
max = 16; s = Series[Exp[-3/2 + Exp[x]/2]*Sum[Exp[Binomial[n+1, 2]*x]/n!, {n, 0, 3*max }], {x, 0, max}] // Normal; a[n_] := SeriesCoefficient[s, {x, 0, n}]*n!; Table[a[n] // Round, {n, 0, max} ] (* Jean-François Alcover, Apr 23 2014, after Vladeta Jovovic *) sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; Table[Length[mps[Ceiling[Range[1/2,n,1/2]]]],{n,5}] (* Gus Wiseman, Jul 18 2018 *)
Formula
Lloyd's article gives a complicated explicit formula.
E.g.f.: exp(-3/2 + exp(x)/2)*Sum_{n>=0} exp(binomial(n+1, 2)*x)/n! [probably in the Labelle paper]. - Vladeta Jovovic, Apr 27 2004
Comments