A020669 Numbers of form x^2 + 5 y^2.
0, 1, 4, 5, 6, 9, 14, 16, 20, 21, 24, 25, 29, 30, 36, 41, 45, 46, 49, 54, 56, 61, 64, 69, 70, 80, 81, 84, 86, 89, 94, 96, 100, 101, 105, 109, 116, 120, 121, 125, 126, 129, 134, 141, 144, 145, 149, 150, 161, 164, 166, 169, 174, 180, 181, 184, 189, 196, 201, 205, 206, 214, 216
Offset: 1
References
- H. Cohn, A second course in number theory, John Wiley & Sons, Inc., New York-London, 1962. See pp. 3, 4 and later chapters.
- David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989. See Eq. (2.22), p. 33.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..13859
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Crossrefs
Programs
-
Magma
[n: n in [0..216] | NormEquation(5, n) eq true]; // Arkadiusz Wesolowski, May 11 2016
-
Maple
select(t -> [isolve(x^2+5*y^2=t)]<>[], [$0..1000]); # Robert Israel, May 11 2016
-
Mathematica
formQ[n_] := Reduce[x >= 0 && y >= 0 && n == x^2 + 5 y^2, {x, y}, Integers] =!= False; Select[ Range[0, 300], formQ] (* Jean-François Alcover, Sep 20 2011 *) mx = 300; limx = Sqrt[mx]; limy = Sqrt[mx/5]; Select[ Union[ Flatten[ Table[x^2 + 5*y^2, {x, 0, limx}, {y, 0, limy}] ] ], # <= mx & ] (* T. D. Noe, Sep 20 2011 *)
Formula
List contains 0 and all positive n such that 2*A035170(n) = A028586(2n) is nonzero. - Michael Somos, Oct 21 2006
Extensions
Entry revised by N. J. A. Sloane, Sep 20 2012
Comments