cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020696 Let a,b,c,...k be all divisors of n; a(n) = (a+1)*(b+1)*...*(k+1).

Original entry on oeis.org

2, 6, 8, 30, 12, 168, 16, 270, 80, 396, 24, 10920, 28, 720, 768, 4590, 36, 31920, 40, 41580, 1408, 1656, 48, 2457000, 312, 2268, 2240, 104400, 60, 5499648, 64, 151470, 3264, 3780, 3456, 76767600, 76, 4680, 4480, 15343020, 84, 19071360, 88, 372600, 353280, 6768
Offset: 1

Views

Author

Amarnath Murthy, Jun 01 2003

Keywords

Comments

Named "Vandiver's arithmetical function" by Sándor (2021), after the American mathematician Harry Schultz Vandiver (1882-1973). - Amiram Eldar, Jun 29 2022

Crossrefs

Cf. A057643 (LCM instead of product).
Cf. A299436 (exp).

Programs

  • Haskell
    a020696 = product . map (+ 1) . a027750_row'
    -- Reinhard Zumkeller, Mar 28 2015
    
  • Maple
    a:= n-> mul(d+1, d=numtheory[divisors](n)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Jun 30 2022~
  • Mathematica
    Table[Times @@ (Divisors[n] + 1), {n, 43}] (* Ivan Neretin, May 27 2015 *)
  • PARI
    a(n) = {d = divisors(n); return (prod(i=1, #d, d[i]+1));} \\ Michel Marcus, Jun 12 2013
    
  • Python
    from math import prod
    from sympy import divisors
    def A020696(n): return prod(d+1 for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 30 2022

Formula

a(p) = 2(p+1), a(p^2) = 2(p+1)(p^2+1) for primes p.
a(n) = Product_{k = 1..A000005(n)} (A027750(n,k) + 1). - Reinhard Zumkeller, Mar 28 2015
a(n) = Product_{d|n} (d+1). - Amiram Eldar, Jun 29 2022

Extensions

Edited by Don Reble, Jun 05 2003