A020696 Let a,b,c,...k be all divisors of n; a(n) = (a+1)*(b+1)*...*(k+1).
2, 6, 8, 30, 12, 168, 16, 270, 80, 396, 24, 10920, 28, 720, 768, 4590, 36, 31920, 40, 41580, 1408, 1656, 48, 2457000, 312, 2268, 2240, 104400, 60, 5499648, 64, 151470, 3264, 3780, 3456, 76767600, 76, 4680, 4480, 15343020, 84, 19071360, 88, 372600, 353280, 6768
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- József Sándor, On Vandiver's arithmetical function - I, Notes on Number Theory and Discrete Mathematics, Vol. 27, No. 3 (2021), pp. 29-38.
- Harry S. Vandiver, Problem 116, American Mathematical Monthly, Vol. 11, No. 2 (1904), pp. 38-39.
Crossrefs
Programs
-
Haskell
a020696 = product . map (+ 1) . a027750_row' -- Reinhard Zumkeller, Mar 28 2015
-
Maple
a:= n-> mul(d+1, d=numtheory[divisors](n)): seq(a(n), n=1..50); # Alois P. Heinz, Jun 30 2022~
-
Mathematica
Table[Times @@ (Divisors[n] + 1), {n, 43}] (* Ivan Neretin, May 27 2015 *)
-
PARI
a(n) = {d = divisors(n); return (prod(i=1, #d, d[i]+1));} \\ Michel Marcus, Jun 12 2013
-
Python
from math import prod from sympy import divisors def A020696(n): return prod(d+1 for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 30 2022
Formula
a(p) = 2(p+1), a(p^2) = 2(p+1)(p^2+1) for primes p.
a(n) = Product_{d|n} (d+1). - Amiram Eldar, Jun 29 2022
Extensions
Edited by Don Reble, Jun 05 2003
Comments