cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020708 Pisot sequences E(4,9), P(4,9).

Original entry on oeis.org

4, 9, 20, 44, 97, 214, 472, 1041, 2296, 5064, 11169, 24634, 54332, 119833, 264300, 582932, 1285697, 2835694, 6254320, 13794337, 30424368, 67103056, 148000449, 326425266, 719953588, 1587907625, 3502240516, 7724434620, 17036776865, 37575794246, 82876023112
Offset: 0

Views

Author

Keywords

Crossrefs

This is a subsequence of A008998.
See A008776 for definitions of Pisot sequences.

Programs

  • Magma
    Exy:=[4,9]; [n le 2 select Exy[n] else Floor(Self(n-1)^2/Self(n-2) + 1/2): n in [1..40]]; // Bruno Berselli, Feb 05 2016
    
  • Mathematica
    RecurrenceTable[{a[0] == 4, a[1] == 9, a[n] == Floor[a[n - 1]^2/a[n - 2] + 1/2]}, a, {n, 0, 30}] (* Bruno Berselli, Feb 05 2016 *)
    LinearRecurrence[{2,0,1},{4,9,20},40] (* Harvey P. Dale, Dec 19 2022 *)
  • PARI
    Vec((4+x+2*x^2) / (1-2*x-x^3) + O(x^30)) \\ Jinyuan Wang, Mar 10 2020

Formula

a(n) = 2*a(n-1) + a(n-3) (holds at least up to n = 1000 but is not known to hold in general).
Empirical g.f.: (4+x+2*x^2) / (1-2*x-x^3). - Colin Barker, Jun 05 2016
Theorem: E(4,9) satisfies a(n) = 2 a(n - 1) + a(n - 3) for n >= 3. Proved using the PtoRv program of Ekhad-Sloane-Zeilberger, and implies the above conjectures. - N. J. A. Sloane, Sep 09 2016