A020725 Integers >= 2. a(n) = n+1.
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 1
Links
- M. El Bachraoui, Primes in the interval (2n, 3n), International Journal of Contemporary Mathematical Sciences 1:13 (2006), pp. 617-621.
- Tanya Khovanova, Recursive Sequences
- Antonio Gracia Llorente, Arithmetic Progression-Representing Constants, OSF Preprint, 2023.
- Eric Weisstein's World of Mathematics, Pierce Expansion
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Column 1 of A210976.
Programs
-
Mathematica
Range[2,100] (* Harvey P. Dale, Aug 31 2015 *) PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[1/E , 7!], 50] (* G. C. Greubel, Nov 14 2016 *)
-
PARI
a(n)=n+1 \\ Charles R Greathouse IV, Aug 23 2011
Formula
From Franklin T. Adams-Watters, May 22 2006: (Start)
O.g.f.: (2*x - x^2)/(1 - x)^2.
E.g.f.: (1 + x)*exp(x)-1.
Dirichlet g.f.: zeta(s) + zeta(s-1).
a(n) = n + 1 for n>0. (End)
Extensions
Edited by Jon E. Schoenfield, Sep 20 2013
Comments