A020857 Decimal expansion of log_2(3).
1, 5, 8, 4, 9, 6, 2, 5, 0, 0, 7, 2, 1, 1, 5, 6, 1, 8, 1, 4, 5, 3, 7, 3, 8, 9, 4, 3, 9, 4, 7, 8, 1, 6, 5, 0, 8, 7, 5, 9, 8, 1, 4, 4, 0, 7, 6, 9, 2, 4, 8, 1, 0, 6, 0, 4, 5, 5, 7, 5, 2, 6, 5, 4, 5, 4, 1, 0, 9, 8, 2, 2, 7, 7, 9, 4, 3, 5, 8, 5, 6, 2, 5, 2, 2, 2, 8, 0, 4, 7, 4, 9, 1, 8, 0, 8, 8, 2, 4
Offset: 1
Examples
log_2(3) = 1.5849625007211561814537389439...
References
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 257.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.16, p. 145.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- E. G. Dunne, Pianos and Continued Fractions
- Shalom Eliahou, Le problème 3n+1 : y a-t-il des cycles non triviaux? (III), Images des Mathématiques, CNRS, 2011 (in French).
- Steven Finch, Pascal Sebah and Zai-Qiao Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008, p. 1.
- Karatsuba, The Complexity of Computations, Proceedings of the Steklov Institute of Mathematics, 1995: 169-183.
- Youngik Lee, Numerical Approach on Collatz Conjecture, Preprints.org, Brown Univ., 2024. See p. 13.
- Simon Plouffe, log(3)/log(2) to 10000 digits
- A. M. Reiter, Determining the dimension of fractals generated by Pascal's triangle, Fibonacci Quart, 31(2):112-120, 1993.
- Eric Weisstein's World of Mathematics, Stolarsky-Harborth Constant
- Eric Weisstein's World of Mathematics, Pascal's Triangle
- Eric Weisstein's World of Mathematics, Sierpiński Sieve
- Wikipedia, Karatsuba algorithm
- Wikipedia, Sierpinski triangle
- Index entries for transcendental numbers
Crossrefs
Cf. decimal expansion of log_2(m): this sequence, A020858 (m=5), A020859 (m=6), A020860 (m=7), A020861 (m=9), A020862 (m=10), A020863 (m=11), A020864 (m=12), A152590 (m=13), A154462 (m=14), A154540 (m=15), A154847 (m=17), A154905 (m=18), A154995 (m=19), A155172 (m=20), A155536 (m=21), A155693 (m=22), A155793 (m=23), A155921 (m=24).
Cf. A102525.
Programs
-
Maple
evalf(log[2](3), 100); # Bernard Schott, Feb 02 2023
-
Mathematica
RealDigits[Log[2, 3], 10, 100][[1]] (* Alonso del Arte, Jun 22 2012 *)
-
PARI
log(3)/log(2) \\ Michel Marcus, Jan 11 2016
Formula
Equals 1 / A102525. - Bernard Schott, Feb 02 2023
Extensions
Comment generalized by J. Lowell, Apr 26 2014
Comments