cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A284700 Number of edge covers in the n-antiprism graph.

Original entry on oeis.org

4, 13, 205, 2902, 41413, 590758, 8427370, 120219259, 1714968133, 24464596729, 348995693650, 4978540849669, 71020558255594, 1013132129923498, 14452670295681235, 206172198577335937, 2941115696724530533, 41956003773586931038, 598516493115066264085
Offset: 0

Views

Author

Eric W. Weisstein, Apr 01 2017

Keywords

Comments

Sequence extrapolated to n=0 using recurrence. - Andrew Howroyd, May 15 2017

Crossrefs

Programs

  • Mathematica
    Table[RootSum[4 - # - 18 #^2 - 13 #^3 + #^4 &, #^n &], {n, 0, 20}] (* Eric W. Weisstein, May 17 2017 *)
    LinearRecurrence[{13, 18, 1, -4}, {13, 205, 2902, 41413}, {0, 20}] (* Eric W. Weisstein, May 17 2017 *)
    CoefficientList[Series[(-x^3-36*x^2-39*x+4)/(4*x^4-x^3-18*x^2-13*x+1), {x, 0, 50}], x]
  • PARI
    Vec((-x^3-36*x^2-39*x+4)/(4*x^4-x^3-18*x^2-13*x+1)+O(x^20)) \\ Andrew Howroyd, May 15 2017

Formula

From Andrew Howroyd, May 15 2017 (Start)
a(n) = 13*a(n-1)+18*a(n-2)+a(n-3)-4*a(n-4) for n>=4.
G.f.: (-x^3-36*x^2-39*x+4)/(4*x^4-x^3-18*x^2-13*x+1).
(End)

Extensions

a(0)-a(2) and a(9)-a(18) from Andrew Howroyd, May 15 2017

A286911 Number of edge covers in the ladder graph P_2 x P_n.

Original entry on oeis.org

1, 7, 43, 277, 1777, 11407, 73219, 469981, 3016729, 19363879, 124293499, 797819173, 5121067777, 32871277183, 210995228083, 1354343064493, 8693301516841, 55800847838359, 358176305451691, 2299073773191541, 14757369859827601, 94725087867636847
Offset: 1

Views

Author

Andrew Howroyd, May 15 2017

Keywords

Crossrefs

Row 2 of A286912.

Programs

  • Mathematica
    Table[-RootSum[2 - 3 # - 6 #^2 + #^3 &, -14 #^n - 5 #^(n + 1) + #^(n + 2) &]/30, {n, 20}] (* Eric W. Weisstein, Aug 09 2017 *)
    LinearRecurrence[{6, 3, -2}, {1, 7, 43}, 20] (* Eric W. Weisstein, Aug 09 2017 *)
    CoefficientList[Series[(1 + x - 2 x^2)/(1 - 6 x - 3 x^2 + 2 x^3), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 09 2017 *)

Formula

a(n) = 6*a(n-1) + 3*a(n-2) - 2*a(n-3) for n > 3.
G.f.: x*(1-x)*(1+2*x)/(1-6*x-3*x^2+2*x^3).

A290470 Number of minimal edge covers in the n-Moebius ladder.

Original entry on oeis.org

3, 7, 15, 59, 143, 367, 1039, 2755, 7395, 20007, 53727, 144635, 389535, 1048159, 2821535, 7595267, 20443523, 55029319, 148125295, 398712379, 1073232175, 2888862159, 7776059055, 20931132355, 56341155043, 151655701607, 408217663167, 1098815603707, 2957725352255
Offset: 1

Views

Author

Eric W. Weisstein, Aug 03 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2 Cos[n Pi/2] - RootSum[-1 + # + #^2 + #^3 &, #^n &] +
      RootSum[1 - 2 #^2 - 2 #^3 + #^4 &, #^n &], {n, 20}]
    LinearRecurrence[{1, 2, 6, 2, 2, -2, -2, -1, 1}, {3, 7, 15, 59, 143, 367, 1039, 2755, 7395}, 20]
    CoefficientList[Series[-(((1 + x) (-3 - x - x^2 + x^3) (-1 - 4 x^3 + 3 x^4))/((1 + x^2) (-1 - x - x^2 + x^3) (1 - 2 x - 2 x^2 + x^4))), {x, 0, 20}], x]
  • PARI
    Vec((1 + x)*(1 + 4*x^3 - 3*x^4)*(3 + x + x^2 - x^3)/((1 + x^2)*(1 + x + x^2 - x^3)*(1 - 2*x - 2*x^2 + x^4)) + O(x^30)) \\ Andrew Howroyd, Aug 04 2017

Formula

From Andrew Howroyd, Aug 04 2017: (Start)
a(n) = a(n-1) + 2*a(n-2) + 6*a(n-3) + 2*a(n-4) + 2*a(n-5) - 2*a(n-6) - 2*a(n-7) - a(n-8) + a(n-9) for n > 9.
G.f.: x*(1 + x)*(1 + 4*x^3 - 3*x^4)*(3 + x + x^2 - x^3)/((1 + x^2)*(1 + x + x^2 - x^3)*(1 - 2*x - 2*x^2 + x^4)).
(End)

Extensions

a(1)-a(2) and terms a(9) and beyond from Andrew Howroyd, Aug 04 2017
Showing 1-3 of 3 results.