cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A286912 Array read by antidiagonals: T(m,n) = number of edge covers in the grid graph P_m X P_n.

Original entry on oeis.org

0, 1, 1, 1, 7, 1, 2, 43, 43, 2, 3, 277, 969, 277, 3, 5, 1777, 23663, 23663, 1777, 5, 8, 11407, 571099, 2180738, 571099, 11407, 8, 13, 73219, 13807469, 198906617, 198906617, 13807469, 73219, 13, 21, 469981, 333735575, 18169793971, 68534828391, 18169793971, 333735575, 469981, 21
Offset: 1

Views

Author

Andrew Howroyd, May 15 2017

Keywords

Examples

			Table starts:
======================================================================
m\n| 1     2        3           4              5                 6
---|------------------------------------------------------------------
1  | 0     1        1           2              3                 5 ...
2  | 1     7       43         277           1777             11407 ...
3  | 1    43      969       23663         571099          13807469 ...
4  | 2   277    23663     2180738      198906617       18169793971 ...
5  | 3  1777   571099   198906617    68534828391    23650967140325 ...
6  | 5 11407 13807469 18169793971 23650967140325 30833670159649637 ...
...
		

Crossrefs

Rows 1-3 are A000045(n-1), A286911, A288031.
Main diagonal is A286913.

Extensions

T(1,1) corrected by Andrew Howroyd, Jun 04 2017

A286913 Number of edge covers in the grid graph P_n X P_n.

Original entry on oeis.org

0, 7, 969, 2180738, 68534828391, 30833670159649637, 197887615273032627789510, 18126687290150589819559507400227, 23696879029605485832353513435527035363501, 442121584517675331278913696274915728729945474905362
Offset: 1

Views

Author

Andrew Howroyd, May 15 2017

Keywords

Crossrefs

Main diagonal of A286912.
Cf. A286911.

Programs

Extensions

a(1) corrected by Andrew Howroyd, Jan 29 2023

A286945 Number of maximal matchings in the ladder graph P_2 X P_n.

Original entry on oeis.org

1, 2, 5, 11, 24, 51, 109, 234, 503, 1081, 2322, 4987, 10711, 23006, 49415, 106139, 227976, 489669, 1051759, 2259072, 4852259, 10422163, 22385754, 48082339, 103276009, 221826440, 476460797, 1023389687, 2198137722, 4721377893, 10141043023, 21781936530
Offset: 1

Views

Author

Andrew Howroyd, May 16 2017

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,2,5,11,24];; for n in [6..35] do a[n]:=2*a[n-1]+a[n-4]+a[n-5]; od; a; # G. C. Greubel, Dec 30 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 35); Coefficients(R!( x*(1+x^2+x^3+x^4)/(1-2*x-x^4-x^5) )); // G. C. Greubel, Dec 30 2019
    
  • Maple
    seq(coeff(series(x*(1+x^2+x^3+x^4)/(1-2*x-x^4-x^5), x, n+1), x, n), n = 1..35); # G. C. Greubel, Dec 30 2019
  • Mathematica
    Table[3Cos[nPi/3]/13 - 5Sin[nPi/3]/(13 Sqrt[3]) + RootSum[-1 -2# -#^2 +#^3 &, (-6 -72# +80#^2) #^n &]/403, {n, 35}] (* Eric W. Weisstein, Jul 13 2017 *)
    LinearRecurrence[{2,0,0,1,1}, {1,2,5,11,24}, 35] (* Eric W. Weisstein, Jul 13 2017 *)
    CoefficientList[Series[(1+x^2+x^3+x^4)/(1-2x-x^4-x^5), {x, 0, 35}], x] (* Eric W. Weisstein, Jul 13 2017 *)
  • PARI
    Vec((1+x^2+x^3+x^4)/((1-x+x^2)*(1-x-2*x^2-x^3)) + O(x^35))
    
  • Sage
    def A286945_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+x^2+x^3+x^4)/(1-2*x-x^4-x^5) ).list()
    a=A286945_list(35); a[1:] # G. C. Greubel, Dec 30 2019
    

Formula

a(n) = 2*a(n-1) + a(n-4) + a(n-5) for n>5.
G.f.: x*(1+x^2+x^3+x^4)/((1-x+x^2)*(1-x-2*x^2-x^3)).

A288031 Number of edge covers in the grid graph P_3 X P_n.

Original entry on oeis.org

1, 43, 969, 23663, 571099, 13807469, 333735575, 8066926825, 194989463233, 4713185791699, 113924706164937, 2753729539353359, 66561737202707371, 1608896152717277333, 38889412128248718215, 940014912175876488361, 22721558047666401897553, 549213840574693856578267
Offset: 1

Views

Author

Andrew Howroyd, Jun 04 2017

Keywords

Crossrefs

Row 3 of A286912.

Formula

Empirical: a(n) = 20*a(n-1)+100*a(n-2)+24*a(n-3) -95*a(n-4)+10*a(n-5)+8*a(n-6) for n>6.
Empirical g.f.: x*(1 + 23*x + 9*x^2 - 41*x^3 + 2*x^4 + 8*x^5) / (1 - 20*x - 100*x^2 - 24*x^3 + 95*x^4 - 10*x^5 - 8*x^6). - Colin Barker, Jun 11 2017
Showing 1-4 of 4 results.