cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A284703 Number of maximal matchings in the n-prism graph.

Original entry on oeis.org

1, 5, 10, 17, 51, 98, 211, 457, 964, 2095, 4489, 9638, 20723, 44469, 95550, 205225, 440777, 946808, 2033571, 4367947, 9381928, 20151345, 43283195, 92967814, 199685501, 428904403, 921243124, 1978737477, 4250128177, 9128846128, 19607840133, 42115660425
Offset: 1

Views

Author

Eric W. Weisstein, Apr 01 2017

Keywords

Comments

Sequence extrapolated to n=1 using recurrence. - Andrew Howroyd, May 16 2017

Crossrefs

Programs

  • Magma
    I:=[1,5,10,17,51,98,211,457]; [n le 8 select I[n] else Self(n-1)+2*Self(n-2)+Self(n-3)-Self(n-4)+2*Self(n-5)+Self(n-6)-Self(n-7)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, May 17 2017
  • Mathematica
    LinearRecurrence[{1, 2, 1, -1, 2, 1, -1, -1}, {1, 5, 10, 17, 51, 98, 211, 457}, 40] (* Vincenzo Librandi, May 17 2017 *)
    CoefficientList[Series[(-8 x^7 - 7 x^6 + 6 x^5 + 10 x^4 - 4 x^3 + 3 x^2 + 4 x + 1) / ((x^2 - x + 1) (x^3 - x - 1) (x^3 + 2 x^2 + x - 1)), {x, 0, 33}], x] (* Vincenzo Librandi, May 17 2017 *)
    Table[2 Cos[n Pi/3] + RootSum[-1 - 2 # - #^2 + #^3 &, #^n &] +
      RootSum[-1 + #^2 + #^3 &, #^n &], {n, 20}] (* Eric W. Weisstein, May 17 2017 *)
  • PARI
    Vec((-8*x^7-7*x^6+6*x^5+10*x^4-4*x^3+3*x^2+4*x+1)/((x^2-x+1)*(x^3-x-1)*(x^3+2*x^2+x-1))+O(x^20)) \\ Andrew Howroyd, May 16 2017
    

Formula

From Andrew Howroyd, May 16 2017 (Start)
a(n) = a(n-1)+2*a(n-2)+a(n-3)-a(n-4)+2*a(n-5)+a(n-6)-a(n-7)-a(n-8) for n>8.
G.f.: x*(-8*x^7-7*x^6+6*x^5+10*x^4 -4*x^3+3*x^2+4*x+1)/((x^2-x+1)*(x^3-x-1)*(x^3+2*x^2+x-1)).
(End)

Extensions

a(1)-a(2) and a(20)-a(32) from Andrew Howroyd, May 16 2017

A288026 Array read by antidiagonals: T(m,n) = number of maximal matchings in the grid graph P_m X P_n.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 5, 5, 2, 3, 11, 22, 11, 3, 4, 24, 75, 75, 24, 4, 5, 51, 264, 400, 264, 51, 5, 7, 109, 941, 2357, 2357, 941, 109, 7, 9, 234, 3286, 13407, 22228, 13407, 3286, 234, 9, 12, 503, 11623, 76667, 207423, 207423, 76667, 11623, 503, 12
Offset: 1

Views

Author

Andrew Howroyd, Jun 04 2017

Keywords

Examples

			Table starts:
=====================================================
m\n| 1   2    3     4       5        6          7
---|-------------------------------------------------
1  | 1   1    2     2       3        4          5 ...
2  | 1   2    5    11      24       51        109 ...
3  | 2   5   22    75     264      941       3286 ...
4  | 2  11   75   400    2357    13407      76667 ...
5  | 3  24  264  2357   22228   207423    1922112 ...
6  | 4  51  941 13407  207423  3136370   47256485 ...
7  | 5 109 3286 76667 1922112 47256485 1158560776 ...
...
		

Crossrefs

Main diagonal is A287595.
Rows 1-3 are A182097(n+2), A286945, A288028.

A287595 Number of maximal matchings in the n X n grid graph.

Original entry on oeis.org

1, 1, 2, 22, 400, 22228, 3136370, 1158560776, 1147204164108, 2980178704765860, 20513821200001569410, 373243563814532182524614, 17941038966060235808302667164
Offset: 0

Views

Author

Eric W. Weisstein, May 27 2017

Keywords

Crossrefs

Main diagonal of A288026.

Programs

  • Mathematica
    Join[{1}, Table[Length@FindIndependentVertexSet[LineGraph@GridGraph[{n, n}], Infinity, All], {n, 2, 6}]] (* Eric W. Weisstein, Jul 13 2024 *)

Extensions

a(7)-a(10) from Andrey Zabolotskiy, May 31 2017
a(1) changed and a(0) prepended by Alois P. Heinz, May 31 2017
a(11)-a(12) from Andrew Howroyd, Jun 04 2017

A288028 Number of maximal matchings in the grid graph P_3 X P_n.

Original entry on oeis.org

2, 5, 22, 75, 264, 941, 3286, 11623, 40960, 144267, 508812, 1792981, 6319994, 22277291, 78518760, 276763545, 975517878, 3438444583, 12119670866, 42718700667, 150572583140, 530730064095, 1870688029160, 6593699432859, 23241110692298, 81918995835971
Offset: 1

Views

Author

Andrew Howroyd, Jun 04 2017

Keywords

Crossrefs

Row 3 of A288026.

Formula

Empirical: a(n) = a(n-1) +5*a(n-2) +11*a(n-3) +5*a(n-4) +14*a(n-5) +8*a(n-6) +3*a(n-7) -5*a(n-9) -11*a(n-10) -a(n-11) +2*a(n-12) +a(n-15) for n>15.
Empirical g.f.: x*(2 +3*x +7*x^2 +6*x^3 +14*x^4 +7*x^5 +4*x^6 -x^7 -5*x^8 - 11*x^9 -2*x^10 +2*x^11 +x^12 +x^14)/(1 -x -5*x^2 -11*x^3 -5*x^4 -14*x^5 - 8*x^6 -3*x^7 +5*x^9 +11*x^10 +x^11 -2*x^12 -x^15). - Colin Barker, Jun 11 2017
Showing 1-4 of 4 results.