cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020871 Number of spanning trees in a Moebius ladder M_n with 2n vertices.

Original entry on oeis.org

0, 3, 16, 81, 392, 1815, 8112, 35301, 150544, 632043, 2620880, 10759353, 43804824, 177105279, 711809392, 2846259405, 11330543648, 44929049811, 177540878736, 699402223137, 2747583822760, 10766828545767, 42095796462896, 164244726238389, 639620518118448
Offset: 0

Views

Author

Keywords

Examples

			If n=2 then Moebius ladder is complete graph with 4^2 = 16 spanning trees.
		

References

  • N. Biggs, Algebraic Graph Theory, 2nd ed., Cambridge, 1993, p. 42.
  • D. M. Cvetković, M. Doob and H. Sachs, Spectra of graphs: Theory and application, Academic Press, 1980.

Programs

  • Mathematica
    Table[(n/2) (2 + (2 + Sqrt[3])^n + (2 - Sqrt[3])^n), {n, 0, 20}] // Expand
    LinearRecurrence[{10, -35, 52, -35, 10, -1}, {0, 3, 16, 81, 392, 1815}, 30] (* Vincenzo Librandi, Jul 24 2015 *)
    Table[n (ChebyshevT[n, 2] + 1), {n, 0, 20}] (* Eric W. Weisstein, Mar 31 2017 *)
  • PARI
    a(n)=n+n*real((2+quadgen(12))^n) /* Michael Somos, Jun 27 2002 */
    
  • PARI
    concat(0, Vec(x*(3-14*x+26*x^2-14*x^3+3*x^4)/((1-x)*(1-4*x+x^2))^2 + O(x^50))) \\ Colin Barker, Jul 24 2015

Formula

G.f.: x*(3 - 14*x + 26*x^2 - 14*x^3 + 3*x^4)/((1-x)*(1 - 4*x + x^2))^2.
a(n) = (n/2)*(2 + (2+sqrt(3))^n + (2-sqrt(3))^n).
a(n) = n * A121401(n), n > 0. - R. J. Mathar, Jul 17 2013

Extensions

More terms from Michael Somos, Jun 27 2002
a(23)-a(24) from Vincenzo Librandi, Jul 24 2015