cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020878 Number of maximum matchings in the n-Moebius ladder M_n.

Original entry on oeis.org

2, 3, 3, 6, 7, 13, 18, 31, 47, 78, 123, 201, 322, 523, 843, 1366, 2207, 3573, 5778, 9351, 15127, 24478, 39603, 64081, 103682, 167763, 271443, 439206, 710647, 1149853, 1860498, 3010351, 4870847, 7881198, 12752043, 20633241, 33385282, 54018523, 87403803
Offset: 0

Views

Author

Keywords

References

  • J. P. McSorley, Counting structures in the Moebius ladder, Discrete Math., 184 (1998), 137-164.

Programs

  • Magma
    I:=[2, 3, 3, 6]; [n le 4 select I[n] else Self(n-1)+2*Self(n-2)-Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Apr 20 2012
    
  • Mathematica
    CoefficientList[Series[(2+x-4*x^2-x^3)/((1+x)*(1-x)*(1-x-x^2)),{x,0,40}],x] (* Vincenzo Librandi, Apr 20 2012 *)
    Table[1 - (-1)^n + LucasL[n], {n, 20}] (* Eric W. Weisstein, Dec 31 2017 *)
    LinearRecurrence[{1, 2, -1, -1}, {3, 3, 6, 7}, 20] (* Eric W. Weisstein, Dec 31 2017 *)
  • PARI
    Vec((2 + x - 4*x^2 - x^3) / ((1 - x)*(1 + x)*(1 - x - x^2)) + O(x^50)) \\ Colin Barker, Jul 12 2017

Formula

If n mod 2 = 0 then L(n) else L(n)+2, where L() are the Lucas numbers.
a(n) = A001350(n) + 2.
G.f.: (2 + x - 4*x^2 - x^3) / ((1 - x)*(1 + x)*(1 - x - x^2)). - Colin Barker, Jan 23 2012
From Colin Barker, Jul 12 2017: (Start)
a(n) = ((1 - sqrt(5))/2)^n + ((1 + sqrt(5))/2)^n for n even.
a(n) = ((1 - sqrt(5))/2)^n + ((1 + sqrt(5))/2)^n + 2 for n odd.
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) for n>3.
(End)